

Web-based secure high performance remote visualization

R J Vickery1, A Cedilnik2, J P Martin1, Y Dandass3, T Atkison3, R J Moorhead1, J
Clarke4 and P Adams5
1Mississippi State University, HPC Building, Box 9627, Mississippi State, MS 39762,
USA
2Kitware, Inc., 28 Corporate Drive, Suite 204, Clifton Park, New York 12065, USA
3Mississippi State University, Butler Hall, Box 9637, Mississippi State, MS 39762,
USA
4US Army Research Laboratory, Attn: AMSRL-CI-HC, Aberdeen Proving Ground,
MD 21005, USA
5ERDC MSRC, Bldg 8000, 3909 Halls Ferry Road, Vicksburg, MS 39180, USA

rvickery@gri.msstate.edu

Abstract. This paper describes recent work on securing a Web-browser-based remote
visualization capability for large datasets. The results from a security performance study are
presented.

1. Introduction
This work investigates a Web browser-based interactive visualization to allow interactive large data
visualization and analysis from the desktop within the Department of Defense (DoD). Remote
visualization (RMV) is requested more frequently than any other visualization service, and is often the
first thing requested by a user with large dataset analysis requirements. RMV is technically possible,
but a unified approach is needed across the DoD to make it successful, efficient, and useful. An
interactive browser-based capability is the easiest to deploy to multiple desktop platforms, since no
additional software beyond a browser is needed.

There are a number of technologies available for remote visualization [1]. The key security feature
that differentiates this application is that it follows specific High Performance Computing
Modernization Program (HPCMP) security guidelines for Kerberos authentication plus additional
encryption and security on the ticket granting ticket (TGT) [2][3].

This work builds upon the results of an Army Research Lab funded SBIR phase II project with
Kitware, Inc. that exploits ParaView, and has been closely coordinated with the User Interface Toolkit
(UIT) effort [4]. The resulting browser-based product is part of ParaView Enterprise Edition (PVEE).
The interactive performance of PVEE with additional encryption and authentication requirements has
been investigated in order to facilitate the use of RMV by the DoD user community [5][6]. The
emphasis has been on improving performance in the context of secure communications.

The security implementation overview and initial authentication performance studies are discussed.
Although the design and testing were done with the DoD version of Kerberos in mind, the
implementation would work equally well with the MIT or other open-source version of Kerberos.

Institute of Physics Publishing Journal of Physics: Conference Series 46 (2006) 545–549
doi:10.1088/1742-6596/46/1/075 SciDAC 2006

545© 2006 IOP Publishing Ltd

2. Overview
The web visualization component of ParaView Enterprise Edition is a framework to perform
visualizations and data processing within a Web browser-based environment. It contains project
management tools as well as interactive previews of the running visualizations. The system allows
users to run an arbitrary number of visualizations and visualization sessions, as well as generate
images and animations. Figure 1 and Figure 2 show common views from within WebVis.

Figure 1. Example Visualization With
Editable Fields and Annotations.

Figure 2. Full Screen Visualization
Render Window.

The PVEE framework is based on several components (see Figure 3). These components include the
Web Client, Web Server, Database, User Connections Manager (UCM), Visualization Manager (VM),
Server Runner (SR), and ParaView Backend Server (PBS).

Figure 3. WebVis Architecture

The Web Server performs all the necessary communication between the client and various server
components, as well as the necessary authentication of the client. Once the client is authenticated,
random keys are generated that are then used for the life of the user's session. The UCM secures
incoming connections to the system and makes sure only connections that are authenticated are
accepted. The UCM also routes the visualization traffic between the client and an appropriate VM.
The VM is responsible for managing the running visualizations for a specific user (one per user). It is
started when the user logs into the system and persists until the last visualization terminates. The UCM
routes all of the user's visualization sessions to the VM, which sends the request to the actual

546

visualization server through the use of an SR. The SR is a simple program that abstracts the running
of visualizations for the site. The PBS performs all of the actual reading, processing, and visualizing
of data. It is an extension of the regular Desktop ParaView server that supports encryptions and image
transfers appropriate for PVEE .

3. Secure Communications
The design of the UIT Kerberos authentication process was adapted for PVEE [4]. The primary
difference between the UIT and PVEE Kerberos authentication implementations is that PVEE does
not use a “pipe cache” for caching requests, but instead, uses a memory cache. This is because, in
order to streamline execution, the PVEE authentication modules do not execute the standard Kerberos
applications (e.g., kinit and krsh) that require use of a shared credential cache across process
invocations. Instead the PVEE modules replicate the required subset of knit and krsh functionality
using the Kerberos API directly, thereby obviating the need for a shared cache.

3.1. Kerberos Authentication Dataflow
This section describes the process of mutually authenticating PVEE users and PVEE servers (see
Figure 4):

Figure 4. Kerberos Authentication Process

1. The client uses a browser to connect to the PVEE Web server and gets the PVEE login page
over an SSL connection (i.e., the connection uses the HTTPS protocol). This login page
presents an HTML form that asks for the user to enter his/her Kerberos principal (user ID),
password, and SecureID. This user identification data is sent to the Web server which starts
the pvee-login CGI program.

2. The pvee-login CGI program connects to the Kerberos KDC and obtains the user’s TGT using
the user’s identification information.The pvee-login program serializes and encrypts the TGT
using a randomly generated “aes256-cts” key. An MD5 hash of the encrypted TGT is also
generated. The (hash, aes256-cts-key) pair are stored in a database on the Web server
machine to be used in the future for decrypting the encrypted TGT (see step 3 below). The
encrypted TGT is returned to the user’s browser in the form of an HTML cookie over the SSL
connection.

3. The user’s browser now has the output of the pvee-login (i.e., a web page showing various
PVEE function options and the encrypted TGT cookie). The user clicks on a button
requesting a PVEE function. The browser sends the request specification and the encrypted
TGT to the Web server over an SSL connection. The Web server starts the pvee-krb-auth CGI

547

program on the Web server machine. The pvee-krb-auth program and computes the MD5
hash of the cookie data (i.e., the encrypted TGT). The hash is used to lookup the decryption
key from the database on the Web server machine. Next, the encrypted TGT is decrypted and
validated. The validated TGT is used for obtaining the Kerberos ticket for the krsh service for
the machine that has the pvee-ucm program for the visualization requested by the user.

4. The pvee-krb-auth program now has a ticket for the krsh service on the visualization server.
The pvee-krb-auth program connects to the krshd program on the visualization cluster and,
using the krsh ticket, performs mutual authentication between the user and krshd in order to
execute the pvee-ucm program on behalf of the user. After invoking the pvee-ucm program
on the visualization cluster, the pvee-ucm program sends the PVEE visualization applet to the
browser and returns control to the Web server while keeping the connection with the krshd
open in order to continue execution of the pvee-ucm process on the visualization cluster. The
PVEE applet and the pvee-ucm communicate with each other using an AES encrypted
channel. During its lifetime, pvee-krb-auth uses a “memory” cache for Kerberos credentials.
This means that other processes running on the Web server machine cannot access the cache
data.

3.2. Kerberos Authentication Study
Figure 5 charts the results from experiments designed to measure the latency of the Kerberos
authentication software components, including network delays. In this study, authentication latency is
defined as the interval of time starting when the user submits his/her identification and passwords to
the authentication module using the Web browser and ending when the PVEE UCM establishes a
connection with the user’s browser.

0.42 0.46 0.51 0.74 1.26
2.53

5.31

8.92

15.65

26.04

0

5

10

15

20

25

30

1 2 4 8 16 32 64 128 256 1024

Number of Threads

S
ec

o
n

d
s

Figure 5. Kerberos Authentication Latency Study

For this experiment, a C program that simulates the users’ actions was created. This program
connects to the Web server and initiates Web transactions and captures responses (e.g., the encrypted
TGT). This program also records the latency interval start time. Another program captures the
connection requests from the UCM module that indicates that the authentication is successful and
records the latency end time. The MD5 hash of the encrypted TGT is used to correlate the
corresponding start and end time of an authentication request. Separate 2.4 GHz dual Xeon
workstations were used to execute the simulated client, the Web server, the KDC, and the PVEE
server. These four workstations were interconnected using a single 100 Mbps switch. In addition to
these workstations, an external (i.e., outside of the Mississippi State University campus) workstation
was also used for providing Secure ID pre-authentication capability.

548

The experiments are designed to measure the average latency incurred for an exponentially
increasing number of simulated near-simultaneous requests. During a single experimental run, the
simulated client program starts 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, or 1024 threads that simulate the
user’s interactions with the Web server. Figure 5 shows that the average latency is under one second
when there are eight or fewer near simultaneous requests. Although the latency appears to increase
exponentially, note that the number of requests is also growing exponentially. Because the
authentication happens only once at the beginning of a visualization session, it is anticipated that the
impact of this latency will be negligible, especially in the face of the time required by browsers to
transfer and render complex web pages with embedded applets. Clearly, this figure represents the
authentication latency specific to the experimental platform and the results will vary between
installations.

4. Conclusions
We described a methodology for securing a web-browser-based system for interactive visualization
from the desktop that incorporates a web server. In our study on the latency of the Kerberos
authentication components we showed that the impact of this latency was acceptable for our particular
configuration. Additional experiments where a number of different workstations simulating user input
would be interesting future work. These experiments could also include a study of latency when
different machine configurations are used (e.g., the Web server and KDC are placed on the same
machine). Some of the most important information from these test scenarios may not necessarily be in
the numbers, but whether the application can be used with acceptable perceived latency by a DoD
user. We strive to make this a priority.

Having conducted detailed discussions with key DoD security personnel throughout the
development, we fully expect a secure version of PVEE to be approved for deployment at some point.
We look forward to helping users streamline the visualization process and access the results through a
simplified browser based interface.

The views expressed in this paper are those of the authors and do not reflect the official policy or
position of the United Stated Air Force, Department of Defense, United States Government, or
Mississippi State University. This work was made possible through support provided by DoD
HPCMP PET activities through Mississippi State University under contract No. GS04T01BFC0060.

References
[1] Vickery R 2005 Remote visualization: what it could be in the DoD HPCMP Aeronautical

Systems Center Major Shared Resource Center Wright Cycles Fall pp 22-23
http://www.asc.hpc.mil/aboutus/journals/fall05.pdf

[2] High Performance Computing Modernization Program 2004 Guidelines for implementing
secure access to HPCMP systems
http://www.hpcmo.hpc.mil/Htdocs/SECURITY/dren_secure_access_guidelines.pdf

[3] Garman J 2003 Kerberos: The Definitive Guide (Sebastopol, CA: O'Reilly & Associates, Inc.)
[4] Duett P, Monceaux W and Rappold K 2004 EZHPC: easy access to high performance

computing Proceedings of the HPCMP Users Group Conference pp 289-292
[5] Vickery R, Cedilnik A, Moorhead R, Dandass Y, Atkison T and Martin J 2005 WebVis secure

communications model and preliminary performance study PET RMV-KY5-001 Report 1
December

[6] Moorhead R, Vickery R, Cedilnik A, Dandass Y, Atkison T, Martin J, Vaughn R and Martin K
2006 High-performance secure remote visualization using WebVis PET RMV-KY5-001
Report 31 May

549

