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Abstract 

We describe an implementation and experiments with a low-distortion 
randomized projection algorithm [LINI94] that can reduce the number 
of dimensions in the data by a considerable amount.  The performance 
of the randomized algorithm is compared with that of a popular 
technique---Principal Component Analysis (PCA).  The experiments 
show that the randomized projection algorithm consistently 
outperforms the PCA. 

 
 
1   Introduction 
 
Mining high-dimensional data often requires construction of a low-dimensional 
embedding that preserves the underlying “structure” hidden in the data.  Randomized 
projection techniques [LINI94, MANN01] offer one way to do that.  These randomized 
algorithms can guarantee that the distances between points in the original dataset remain 
almost invariant in the projected dataset.  These projections usually reduce the number of 
dimensions dramatically.  Such reduction of dimensionality can be used in a number of 
different data mining applications.  Text data mining is an example.  In text mining it is 
not uncommon to see as many as 100,000 features derived for each document in the 
corpus.  The ability to reduce the number of features for a given data record down to a 
more manageable number is very useful particularly as we move toward real-time 
applications. 
 

This paper presents our preliminary experiments with the randomized projection 
algorithm (in short the LLR algorithm) developed by Linial, London and Rabinovich 
[LINI94].  We report experiments performed on a diverse set of data and compare its 
performance with the popular Principal Component Analysis (PCA) [HOTE33]. 
 
 Section 2 presents the background and the related work.  It also describes the data 
that we use for our experiments.  Section 3 describes the methodology and setup of our 
experiments.  Section 4 presents the results.  Finally, section 5 concludes this paper and 
identifies the future work. 



2   Background and Related Work 
 
A large collection of related work on this problem can be found in the Linial paper 
[LINI94].  We present a brief synopsis.  Numerous efforts in the field of feature 
(dimensionality) reduction for finite metric spaces have been documented in [ARIA92], 
[BALL90] and [BOUR85] as well as others.  Hjaltason and Samet [HJAL00] describe 
work into a variant of Lipschitz embeddings, which is aimed at reducing the high cost of 
computing the embeddings and eliminating the large number of coordinate values.  
Another topic that fits with-in this realm of graph metrics is low-dimensional graph 
coloring [AWER90] and [LINI93]. 
 

Several groups are using randomized projection techniques in various ways 
including Mannila and his group [MANN01], which are using random projection 
techniques to map sequences of events.  Arriaga and Vempala [ARRI99], in the field of 
concept learning, are using projections to learn concept classes while maintaining a 
desired level of robustness in half-spaces.  Their implementation is based on a neural 
network, which they call a neuronal, allows for the robustness parameter not to be known 
in advance.  The locality preserving hashing schemes proposed by Indyk et. al. [INDY97] 
has many applications including high-dimensional search and multimedia indexing.  
Hristescu and Farach-Colton [HRIS99] use the Smith-Waterman distance function in 
their projection approach to perform efficient similarity searches of protein databases.  
Cowen and Priebe [COWE97] are applying projections in a pattern recognition problem 
where they are, among other methods, clustering PET scan brain volumes. 
 
 Building on the previous work of those like Linial et al., we are exploring and 
have begun to evaluate the effectiveness of a low-dimensional embedding algorithm as a 
possible aide to the problem of dimensionality in applications such as text data mining.  
Below is a description of the algorithm and datasets used in our experiments. 
 
 
2.1   Algorithm 
 
There are many problem domains where a Euclidian distance metric would not make 
sense, for example text mining.  Our approach was to implement a solution that did not 
have the traditional restraints of relying on the Euclidian distance metric or metric space.  
The avenue that we chose was to define a method to efficiently construct an embedding 
that would represent a non-Euclidian space as a Euclidian space as efficiently as possible.   
 
 Given a domain (χn) that contains a dataset, let (ρx) be a metric that defines the 
distance between any two points in that dataset.  An isometry is a mapping γ from one 
metric space (Xn,ρx) to another metric space (Ym,ρy) such that ),( 21 xxxρ = 
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may say that the mapping has an ∈  distortion [KARG00]. 



 
The algorithm that we used in our experiments is a variation of Linial’s [LINI94], 

which is an extension of the Johnson-Lindenstrauss [JOHN84] and Bourgain [BOUR85] 
algorithms.   

 
Theorem 2.1:  (Johnson-Lindenstrauss [JOHN84])  Any set of n points in a 

Euclidean space can be mapped to ℜ t where t = )
log

(
2ε
nΟ  with distortion ≤ 1 + ε  in the 

distances.  Such a mapping may be found in random polynomial time.   
 
Theorem 2.2:  (Bourgain [BOUR85])  Every n-point metric space (X,d) can be 

embedded in an O(log n)-dimensional Euclidean space with an O(log n) distortion. 
 
Lemma 3.3:  (Linial [LINI94])  In random polynomial-time (X,d) may be 

embedded in )(log2 nO
pl  (for any p > 2), with distortion O(log n).   

 
The general organization of the algorithm is as follows.  For each cardinality k < n 

which is a power of 2, randomly pick O(log n) sets A ⊆  V(G) of cardinality k.  Map 
every vertex x to the vector (d(x,A))  (where d(x,A) = min{d(x,y)|y ∈  A}) with one 
coordinate for each A selected [LINI94].  We show that this mapping has an O(log n) 
distortion. 
 

Briefly stated, the algorithm chooses O(log n) number of subsets from the data 
and computes the minimum distance between the points and the subsets to create the 
projection.  We extended the algorithm so that instead of producing (log n) features for a 
given dataset in the new space, the algorithm would produce any desired number of 
features for the dataset.  This extension was extremely useful during our experiments, as 
the results will show. 
 
 
2.2 Data 
 
To demonstrate the effectiveness of the implementation and methodology of the LLR 
algorithm, we used three different datasets.  Two were from the UCI Machine Learning 
Repository and the third was from a DARPA sponsored project. 
 
 

2.2.1  Forest Cover Type 
 

The Forest Cover Type dataset, obtained from UCI, is the actual forest cover type 
for a given observation (30 x 30 meter cell) which was determined from the US Forest 
Service (USFS) Region 2 Resource Information System (RIS) data.  The original data 
was obtained from the US Geological Survey (USGS) and USFS data with derivation of 
independent variables added.  The data was used in its raw form (not scaled) and 
contained binary (0 or 1) columns of data for qualitative independent variables 



(wilderness areas and soil types).  The dataset contained 54 features and a class variable 
to designate the cover type [BAY99]. 
 
 

2.2.2  The Insurance Company Benchmark 
 

The Insurance Company Benchmark (COIL 2000) dataset has information about 
customers that consists of 86 variables and includes product usage data and socio-
demographic data derived from zip and area codes.  The data is based on a real world 
business problem and was supplied to UCI by the Dutch data mining company Sentient 
Machine Research.  The training set contains over 5000 descriptions of customers, 
including the information of whether or not they have a caravan insurance policy.  A test 
set contains 4000 customers of whom only the organizers know if they have a caravan 
insurance policy [BAY99].  For our experimentations we only used the first 1000 records 
of the training set. 
 
 

2.2.3  Network Intrusion  
 

The third dataset that was used in our experiments came from the 1998 off-line 
intrusion detection evaluation (IDEVAL), which was conducted by MIT Lincoln 
Laboratory under DARPA sponsorship.  The contents of network traffic such as SMTP, 
HTTP, and FTP file transfers were either statistically similar to live traffic, or sampled 
from public-domain sources.  These statistical profiles indicated the frequency of 
occurrence of different UNIX commands (e.g. mail, lynx, ls, cd, vi, cc, and man), typical 
login times and telnet session durations, typical source and destination machines, and 
other information [LIPP00].  

 
The following attack families were included in the evaluation: user to root, 

remote to local, denial of service, and probe/surveillance.  A user to root attack occurs 
when a local user on a machine tries to obtain privileges normally reserved for the UNIX 
root or super user.  In remote to local attacks, an attacker who does not have an account 
on a victim machine sends packets to that machine in order to gain local access.  Denial 
of service attacks are designed to disrupt a host or network service.  Probe/surveillance 
attacks occur when an unauthorized user scans a network of computers to gather 
information or find known vulnerabilities [LIPP00], perhaps in order to then launch one 
of the other attacks.  For a more detailed explanation and definition of these families of 
network attacks, see Kendall’s thesis [KENN99]. 

 
The IDEVAL data was gathered by running tcpdump, a network-sniffing tool, on 

a local network and saving the packets to a file.  We received a copy of this file as our 
dataset.  This file was still in raw packet form when we received it; therefore, our first 
task was to re-assemble it into individual sessions, where each session represented a 
complete user interaction.  These sessions were then preprocessed to produce features.  In 
our case, the features were n-grams.  N-grams are n character sequences computed by 
sliding window size of n across the entire session one character at a time.  For our dataset 



of 1000 sessions and using 3 as a value on n, 6500 total features were created for the 
session corpus. 
 
 
3   Experiments 
 
Our implementation of the low-dimensional, embedding algorithm was written in the C 
programming language, and all experiments with the algorithm were performed on a 
Linux machine.  Multiple experiments were developed and executed to test the accuracy 
of our implementation.  In addition to the algorithm, multiple auxiliary programs were 
written in C to evaluate the algorithm’s performance.  The performance of our low-
dimensional, randomized projection embedding was measured against the original dataset 
as well as against Principal Component Analysis (PCA) [HOTE33].  For our PCA 
algorithm experiments we used the R Statistical Package (www.r-project.org).   
 

The thread of our experimental procedure was as follows: input a given dataset to 
our algorithm which produced as output a low-dimensional embedded dataset with a 
given number of features.  Next, compute the pairwise distance of all the points in our 
new low-dimensional space as well as compute the pairwise distance of the points in our 
original space.  Both of these pairwise distance matrices were then normalized and a cell-
by-cell difference was calculated.  This difference calculation was averaged over the 
entire matrix to produce the results graphed below.  The same thread was also applied to 
the PCA algorithm. 
 

For both of the UCI datasets, we created three subsets with varying number of 
points (10, 100 and 1000) in each.  A subset of 1000 data points was obtained from the 
DARPA dataset.  The experimental thread defined above was run against all of these 
datasets.  Described below are the results of these experimental runs.   
 
 
4   Results 
 
For each dataset, our algorithm was run multiple times with varying number of features 
produced for each experimental run.  The results for each dataset are gathered together in 
the figures below.  Graphed together, for each of the difference dataset sizes, are our low-
dimensional embedding algorithm results and the results produced using PCA.  Each 
figure as a whole presents a comparison of our low-dimensional embedding algorithm 
and PCA for a given dataset.  In all graphs, the x-axis is the number of features that were 
calculated in the new space and the y-axis is the average difference between the particular 
low-dimensional embedding method and the original dataset.   
 

The explanations of both Figure 1 and Figure 2 are identical, therefore, only 
Figure 1 will be discussed here.  As can be seen in the graphs, for each dataset size, the 
corresponding graphs for our algorithm and PCA are similar, with PCA having a sharper 
drop off as compared to our algorithm in some cases.  The important item to notice is that 
in every instance our algorithm had a significantly lower average difference than the 

http://www.r-project.org/


corresponding PCA plot.  This means that with the same number of low-dimensional 
features our algorithm preserved the characteristics of the actual data much better than 
did the PCA.   

 
The performance of our algorithm on the DARPA dataset is comparable to that of 

the UCI datasets.  This suggests that a huge win can be achieved when using our 
randomized projections instead of the original dataset in data mining/information 
retrieval algorithms.  A reduction from the original 6500 features down to approximately 
30 would allow algorithms that could not handle those numbers of features to run to 
completion successfully.  It should be noted that because of limitations with the particular 
PCA implementation we were using it was not possible to get a comparison run against 
the DARPA intrusion detection dataset.  We feel that these results are very promising and 
are planning further experimentation into the usability of this type of algorithm. 
 
 
5   Conclusion and Future Work 
 
We have shown through our experiments that our algorithm out-performs a standard 
linear algorithm on three datasets.  For all experimental results presented, our algorithm 
has an overall smaller average difference from the original dataset than the comparison 
algorithm, PCA.  In the DARPA dataset case, the linear algorithm would not even run to 
completion.  These results are promising and show that our low-dimensional, randomized 
projection, embedding algorithm can be used successfully to reduce a large feature space 
to a more manageable size with very little distortion from the original dataset. 
 

One of our next steps with this development process is to investigate how well the 
algorithm scales with respect to the number of features and the number of data points in a 
given dataset.  Throughout this phase, multiple data structures will be developed and 
implemented to store the algorithm’s internal information.  As the process continues we 
will begin to increase the upper limits of data points, metric space and data features that 
the algorithm can handle. 

 
Another avenue, as our development continues, is to derive a plan to use our 

algorithm as a pre-processor to a number of feature bound systems, for example network 
intrusion detection applications and text data mining applications. 
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Figure 1.  Performance comparison between our algorithm and PCA on the Forest Cover Type Dataset for 
(top) 10 data points, (center) 100 data points and (bottom) 1000 data points.  The graphs show average 
difference between the original dataset and our algorithm’s embedding along with the average difference 
between the original dataset and PCA’s embedding for each of the calculated features. 
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Figure 2.  Performance comparison between our algorithm and PCA on The Insurance Company 
Benchmark (COIL 2000) Dataset for (top) 10 data points, (center) 100 data points and (bottom) 1000 data 
points.  The graphs show average difference between the original dataset and our algorithm’s embedding 
along with the average difference between the original dataset and PCA’s embedding for each of the 
calculated features. 
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Figure 3.  Performance results of our algorithm on the DARPA Intrusion Detection Dataset.  The graph 
shows the average difference between the original dataset and our algorithm’s embedding for each of the 
calculated features. 
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