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Abstract

This paper describes a research effort to use executable slicing as a pre-
processing aid to improve the prediction performance of rogue software
detection. The prediction technique used here is an information retrieval
classifier known as cosine similarity that can be used to detect previously
unknown, known or variances of known rogue software by applying the feature
extraction technique of randomized projection. This paper provides direction in
answering the question of is it possible to only use portions or subsets, known as
slices, of an application to make a prediction on whether or not the software
contents are rogue. This research extracts sections or slices from potentially
rogue applications and uses these slices instead of the entire application to make
a prediction. Results show promise when applying randomized projections to
cosine similarity for the predictions, with as much as a 4% increase in prediction
performance and a five-fold decrease in processing time when compared to
using the entire application.

Keywords: rogue software detection, executable slicing, information retrieval, n-
gram analysis, cosine similarity, randomized projections

1. Introduction

With today’s market globalization of software development and the
proliferation of malicious attackers, it is becoming almost impossible to have any
trust in the software that is loaded onto our systems. Rouge applications, or
applications in which code has been added, modified or removed with the intent
of causing harm or subverting a system’s intended function (McGraw &
Morrisett, 2000), are becoming more and more prevalent. To combat these
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infiltrations, consumers, as well as corporations, are turning to anti-virus
software products, which contain virus detection engines. Though very good at
what they do, virus detection engines rely on a database of signatures to detect
known rogue applications. Signature based systems inherently limit the
detection of new and previously unknown types of rogue attacks. To that end
there have been several research attempts to overcome these limitations. In one
of these attempts (Atkison, 2009) we have shown the value of using randomized
projection algorithms in detecting malicious applications.

The purpose of this paper is to provide methods and techniques to
overcome the limitations inherent in the signature-based systems mentioned
above. Through this research effort, we will provide a methodology for detecting
rouge applications by enhancing the random projection, dimensionality
reduction concept by using executable slicing. Executable slicing is a strategic
method of compartmentalizing applications, and is used as a pre-processor to
the algorithm. It will be shown that by adding this pre-processing step a
significant gain in accuracy as well as in precision and recall can be achieved.

The following section provides a background description of previous
methods that involve static analysis, information retrieval and randomized
projection. In Section 3, the experimental design of this work is discussed
including software and data used. In Section 4, results achieved are described.
Finally, in Section 5 the conclusion and future directions are presented.

2. Background

Developing effective potential solutions to the malicious software detection
problem is an important direction in host security research. There have been
few research papers, (Kang, Poosankam, & Yin, 2007; Perdisci, Lanzi, & Lee,
2008) are good examples, that pose the option of executable slicing while
looking at malicious detection. Though their focus is directed toward packed
executables, the focus of this paper is to show that statically analyzing sections
or slices of an executable will improve prediction rates of non-packed, stand-
alone executables. It is important to understand the methods and techniques
that are used for these predictions. Since the randomized projection technique
in this solution is used in conjunction with an information retrieval prediction
algorithm we will include a small background on information retrieval as well as
static analysis.

2.1. Static Analysis

Static analysis, sometimes referred to as static program analysis or static
code analysis, is the examination of the source or object code of an application in
order to identify patterns that indicate potential design errors and/or security
threats (Food and Drug Administration [FDA], 2010). This analysis approach
eliminates the need to execute an application in order to determine its behavior,
contrary to its counter-part dynamic analysis, thus avoiding the potential
compromise of the host system.

Static analysis has proven to be a very useful tool in detecting undesirable
or vulnerable code in applications. There have been several research efforts
such as (Bergeron, et al, 2001; Bergeron, Debbabi, Erhioui, & Ktari, 1999;
Christodorescu & Jha, 2003; FDA, 2010; Jovanovic, Kruegel, & Kirda, 2006) that
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have incorporated the use of static analysis to detect malicious code in
executable files.

Christodorescu et al. (Christodorescu & Jha, 2003) presented a static
analysis framework for identifying malicious code patterns in executables and
implemented SAFE, a static analyzer for executables. In their research, they
show that SAFE is resilient to common obfuscation transformations on malicious
code while three popular anti-virus scanners were susceptible to these attacks
(Christodorescu & Jha, 2003).

In (Bergeron, et al., 1999) and (Bergeron, et al,, 2001), Bergeron et al.
present a three-step approach for detecting malicious code in applications,
which they claim is capable of detecting unknown malicious code (Bergeron, et
al, 2001). This approach consists of generating an intermediate representation,
analyzing control and data flows to capture security-oriented program behavior,
and performing static verification of critical behaviors against security policies
(Bergeron, et al., 2001).

Jovanovic et al. (Jovanovic, et al., 2006) tackle the problem of vulnerable
Web applications using static code analysis. They make use of a number of static
analysis techniques including flow-sensitive, interprocedural and context-
sensitive data flow analysis to locate vulnerable points in an application and then
improve the accuracy of the search results via alias and literal analysis
(Jovanovic, et al., 2006). This framework was then implemented as Pixy, an
open-source Java tool which targets taint-style vulnerabilities such as SQL
injection attacks and cross-site scripting (Jovanovic, et al., 2006).

The research proposed in this paper makes use of static analysis
techniques such as executable slicing in conjunction with information retrieval
techniques and randomized projection in order to detect malicious applications.

2.2. Information Retrieval

Information retrieval traditionally is the part of computer science, which
from a collection of written documents studies the retrieval of information (not
data) (Baeza-Yates & Ribeiro-Neto, 1999). These retrieved documents’ aim is to
satisfy an information need (Baeza-Yates & Ribeiro-Neto, 1999). The process
can be thought of as combing through a set of documents, called the corpus, to
find a certain piece of information that has a relationship to a given entity, called
the query. That piece of information can either be an entire document, set of
documents or a subset of a document. Within the information retrieval
community several methods exist for finding these pieces of relevant
information. These methods include vector space models, latent semantic
indexing models and statistical confidence models as well as others. The first
approach to represent a document as a set of terms were vector space models
(Liu, et al.,, 2004). As their name implies vector space models represent their
data as a vector with each dimension being defined as a term which may or may
not have a weight associated with it (Salton, Wong, & Yang, 1975). One of the
most common vector space models is cosine similarity. Cosine similarity
determines the similarity between two data vectors by measuring the angular
distance between them. The property of cosine is that it is 1.0 for identical
vectors and 0.0 for orthogonal vectors (Singhal, 2001) The following is the
formula used in our work for computing cosine similarity.
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This formula computes the similarity between a query Q and a document
D. It does so by summing the individual components of the two entities
represented in the formula as w. The individual components for this research
are defined as n-grams. An n-gram is any substring of length n (Baeza-Yates &
Ribeiro-Neto, 1999), that can also be described as a feature. A feature in this
context is an extracted piece of information that in part describes the item from
which it was extracted. Here the gram (which will be the composite of the
substring) is a byte in hexadecimal form extracted from a binary executable in
the corpus. For example, the string ‘03 A4 EC 17’ represents 4 bytes in
hexadecimal form and ‘03A4’ is an n-gram of length 2 of that string. Therefore,
woi is the weight of the it n-gram in the query and wp; is the weight of the it n-
gram in the document.

There have been other efforts (Abou-Assaleh, Cercone, Keselj, & Sweidan,
20044, 2004b; Henchiri & Japkowicz, 2006; Kephart, et al., 1995; Marceau, 2000;
Reddy & Pujari, 2006) to use the information retrieval concept of n-grams as
features. Henchiri et al. (Henchiri & Japkowicz, 2006) and Abou-Assaleh et al.
(Abou-Assaleh, et al, 2004a, 2004b) both use the Common N-Gram (CNG)
analysis method, which uses the most frequent n-grams to represent a class, to
detect rogue applications. Henchiri further limits the number of features by
imposing a “hierarchical feature selection process” (Henchiri & Japkowicz,
2006). Marceau (Marceau, 2000) puts an interesting twist on the problem of
using n-grams as features by having “multiple-length” grams instead of the
traditional single n-length gram. Marceau does this by first creating and then
compacting a suffix tree, a structure that allows fast string operations be
provides suffixes of given strings, to a Directed Acyclic Graph (DAG). Reddy et al.
(Reddy & Pujari, 2006) develop their own unique n-gram feature selection
measure called, ‘class-wise document frequency.’

Cosine Similarity (Q, D) =

(2.1)

2.3. Randomized Projection

Rogue application detection, following the genre of information retrieval,
suffers from the problem that the data, once processed, is encoded in extremely
high dimensions. This high-dimensional data limits the kind and amount of
analysis that can be performed. One method for dealing with the reduction of
this type of high-dimensional data is known as feature extraction. Feature
extraction transforms, either linearly or non-linearly, the original feature set into
a reduced set that retains the most important predictive information. Examples
of this type include principle component analysis, singular value decomposition
and randomized projection.

In randomized projection, using a random matrix whose columns have
unit lengths the original high-dimensional data is projected onto a lower-
dimensional subspace (Bingham & Mannila, 2001). This type of projection
attempts to retain the maximum amount of information embedded in the
original feature set while substantially reducing the number of features required.
This feature reduction will allow for greater amounts of analysis to be
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performed. The core concept has been developed out of the Johnson-
Lindenstrauss lemma (Johnson & Lindenstrauss, 1984) which states that any set
of n points in a Euclidean space can be mapped to it where t=| =< | with
distortion = 1 + ¢ in the distances. Such a mapping may be found in random
polynomial time. A proof of this lemma can be found in (Dasgupta & Gupta,
1999).

There have been some efforts (Bingham & Mannila, 2001; Mannila &
Seppanen, 2001; Papadimitriou, Raghavan, Tamaki, & Vempala, 2000) that look
at using randomized projection techniques for dimensionality reduction.
Randomized projection refers to projecting a set of points from a high-
dimensional space to a randomly chosen low-dimensional subspace (Vempala,
2004). Minnila et al. (Mannila & Seppanen, 2001) use random projection
techniques to map sequences of events and find similarities between them.
Their specific application is in the telecommunication field looking at how to
better handle network alarms. Their goal is to show the analyst past
circumstances that resemble the current one (Mannila & Seppanen, 2001) so that
a more informed decision about the current situation can be made. Though their
proposed solution is not perfect, it does show the promise of using randomized
projections in a similarity based application.

Bingham and Mannila (Bingham & Mannila, 2001) apply randomized
projections to an image and text retrieval problem. In comparison to this
research problem, their dimensions are not as large, 2500 for images and 5000
for text but the results are still significant. The purpose of their work was to
show that compared to other more traditional dimensionality reduction
techniques, such as principle component analysis or singular value
decomposition, randomized projections offered a greater detail of accuracy. The
authors were also able to show that there was a significant computation saving
by using randomized projections over other feature extraction techniques, such
as principle component analysis.

In another text retrieval application, Kaski (Kaski, 1998) successfully
applied randomized projections in his text retrieval application that used
WEBSOM, a graphical self-organizing map. Again Kaski turned to randomized
projection as a method to overcome the computation expense that made other
dimensionality reduction techniques infeasible when handling high-dimensional
data sets. After incorporating randomized projection into their tool the authors
gained an additional 5% increase in classification and topic separation over
previous methods used (Kaski, 1998).

The following efforts (Kurimo, 1999; Lin & Gunopulos, 2003;
Papadimitriou, et al., 2000) use randomized projection in conjunction with latent
semantic indexing. Papadimitriou et al. (Papadimitriou, et al., 2000), looking at
another information retrieval technique, show positive results in using
randomized projections as a pre-processor to the computationally expensive
Latent Semantic Indexing. By simply applying randomized projection to their
data before computing the Latent Semantic Indexing, their asymptotic running
time for the overall system improved from O(mnc) to O(m(log?n + clogn)), where
m and n are the matrix size, c is the average number of terms per document
(Papadimitriou, et al., 2000).
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3. Experiment

For the experiments presented in this paper, a rogue application
detection tool suite was developed. All of the experiments were run on
commodity hardware running the Fedora Linux operating system. It is very
significant that we were able to complete all of these experiments on commodity
hardware. It shows that large, specialized machines are not needed to perform
rogue application detection and that this work can be broadly applied across
almost any level of architecture that researchers/developers may have and still
gain the significantly positive results that were obtained and discussed below. In
addition, this software and the methods that it supports can easily take
advantage of commodity cluster hardware for substantial gains in performance.

3.1. Similarity Software

The rogue application detection tool suite created for this experiment
provides functionality to input Windows formatted binary executables and then
creates an m-dimensional data space that contains vectors representing those
applications. It can create these vectors from the entire application or slices
(sections) of the application. The sections used in these experiments were the
data and code sections. In these experiments, m is the number of total possible n-
grams that can be extracted from the ingested applications, one dimension for
each possible n-gram. The information stored in each of the dimensions can take
on one of several possible values: the absolute total number of occurrences of
the particular n-gram in the application, the normalized value of the total
number of occurrences of the particular n-gram in the application, or finally a 1 if
the application contained the particular n-gram or a 0 if it did not. Once the m-
dimensional vectors have been created, the randomized projection matrix
algorithm is then applied. In the method of randomized projection via matrix
multiplication, the original m-dimensional data, let’'s say a d x m matrix D, is
projected to a k-dimensional (k << m) subspace through the origin, using a
random m x k matrix R whose columns have unit lengths (Bingham & Mannila,
2001). Selecting vectors that are normally distributed, random variables with a
mean of 1 and a standard deviation of 0, populates the random matrix. After the
original feature matrix is multiplied by the random matrix, the resulting d x k
matrix is a low-dimensional embedding of the original high-dimensional
features. The cosine similarity algorithm is then applied to the query
application’s vector and the corpus applications’ vectors. The cosine similarity
algorithm followed is the same as shown in Eq. (2.1) above. A special feature of
this software is that it has the ability to shift the n-gram window not only by the
more traditional byte offsets but also by bit offsets. This allows for a more fine
grain tuning of the vector values, e.g., if the malicious attacker performs bit
shifting on the rogue applications. It also provides for more accurate similarity
result calculations.

3.2. Data Set

The data set that was compiled together for the experiments described in
this section consisted of 1544 Windows formatted binary executable files. None
of the files in the data set were larger than 950KB. Of these files 303 were
extracted from a fresh installation of the Windows XP operating system. Another
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406 were extracted from a fresh installation of Windows Vista operating system.
Both of these sets were obtained by installing the respective operating system in
a virtual environment on a commodity PC. These virtual environments were not
connected to the Internet and therefore provided a safe location. This ensured
that it would allow for application extraction without the worry of rogue
infiltration during the gathering phase of the research effort. This process
provided a total of 709 files that were in the data set and that were considered
benign. The remaining 835 files for the data set were rogue, Trojan horse
applications that were downloaded from various websites on the Internet
including http://www.trojanfrance.com and http://vx.netlux.org.

3.3. Procedure

This section describes the overall flow of this experiment. The feature set
(n-grams) was extracted from the corpus. The size of the n-grams was varied
from a 3-byte, 5-byte and a 7-byte window. The randomized projection method
described above in section 3.1 was applied to the original high-dimensional data
set to produce three separate new low-dimensional embeddings, which
contained 500, 1000 and 1500 features each. The cosine similarity algorithm
was then applied between each vector in these reduced dimensional data sets
over a range of cosine similarity threshold values, ranging from 0 to 1.0 in 0.05
increments, to produce prediction values. These prediction values were then
used to classify each document vector as either malicious or benign. The results
obtained from these experiments are presented below.

4. Results

To determine if executable slicing can be a useful pre-processing tool,
multiple instantiations of the data set were created. The first instantiation
involved using the entire or whole application itself. This instantiation of the
data is the one that is used by all of the researchers that are mentioned in the
literature survey described in section 2. The remaining three were created
through extracting and combining well-known defined sections from the whole
application. The second and third instantiations were created by extracting the
code and data sections from each application using the PE Explorer tool from
Heaventools Software (Heaventools Software, 2009). To confirm the accuracy of
this tool several of the applications in the data set were hand dissected,
comparing these to the results provided by PE Explorer and the tool proved to be
very accurate. To create the fourth instantiation of the data set, the data and
code sections were combined together via a string append operation. These
additional instantiations were done to determine if extracted sections of each
application could prove more fruitful in detection than just using the entire
application. The thought process behind creating these multiple instantiations
was as follows. Since all of the applications in the data set were valid Windows
format executables, there would have to be an inherent similarity in all of them.
This comes from both structure and header contents that may hamper attempts
to produce valid and viable rogue application detection. By extracting the data
and code sections, this inherent similarity was removed and allowed the
detection methods to concentrate on the true differences in the applications. It
must be noted that with the combined data and code data set instantiation a
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potentially ‘false’ set of features is created at the point of fusion. For example,
consider the union of byte sequences ‘OF 1C A2’ and '45 B0 12’. Extracting n-
grams of length 3 from the resulting sequence ‘OF 1C A2 45 B0 12’, where 1 gram
is 2 contiguous characters, the n-grams ‘1CA245’ and ‘A245B0’, are produced at
the junction ‘A2 45’. This set of n-grams is considered ‘false’ since its members
do not exist in the individual strings. However, the cardinality of this set is
extremely small, at most 6 for these experiments, when compared to the entire
set of features that are extracted and therefore will not hamper any detection
capabilities of the tool suite.

4.1. Validation

As with any new method, technique or technology that is introduced, a
system for determining its accuracy or validity must also be presented.
Validation is a key component to providing feasible confidence that any new
method is effective at reaching a viable solution, in this case a viable solution to
the rogue application detection problem. Validation is not only comparing the
results to what the expected result should be, but it is also comparing the results
of our techniques and methodologies to other published methods.

For this research, the authors are comparing multiple data slices to
determine their usefulness in the prediction process. To that end several
performance values were used to measure and compare the performance of the
experiments conducted in this research effort. These values include true positive
rate (TPR), false positive rate (FPR), accuracy and precision. TPR, equation 4.1
below, also known as recall, is defined as the proportion of relevant applications
that are retrieved, calculated by the ratio of the number of relevant retrieved
applications to the total number of relevant applications that are in the data set
(Salton & Buckley, 1988). In other words TPR is the ratio of actual positive
instances that were correctly identified. FPR, equation 4.2 below, is the ratio of
negative instances that were incorrectly identified. Accuracy, equation 4.3
below, is the ratio of the number of positive instances, either true positive or
false positive, that were correct. Precision, equation 4.4 below, is defined as the
proportion of retrieved applications that are relevant, calculated by the ratio of
the number of relevant retrieved applications to the total number of retrieved
applications (Salton & Buckley, 1988), or the ratio of predicted true positive
instances that were identified correctly. All of these values are derived from
information provided from the truth table. A truth table, also known as a
confusion matrix, provides the actual and predicted classifications from the
predictor. The following are the mathematical definitions of the performance
formulas as well as the truth table (Table 4.1) where, a (true positive) is the
number of rogue applications in the data set that were classified as rogue
applications, b (false positive) is the number of benign applications in the data
set that were classified as rogue applications, c¢ (false negative) is the number of
rogue applications in the data set that were classified as benign applications, and
d (true negative) is the number of benign applications in the data set that were
classified as benign applications (Schultz, Eskin, Zadok, & Stolfo, 2001). Below
are the formulas for the four performance calculations that were used in this
research effort for validation of the predicted results.
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Actual
Positive | Negative

Positive a b

Negative C d
Table 4.1: Definition of Truth Table

Predicted

a

TPR = (4.1)
a+c
b
FPR = (4.2)
b+d
a+d
A = 4.3
ceuracy a+b+c+d (43)
Precision = (4.4)
a+b

Using these calculated performance values this work can be validated and
show that the proposed executable slicing method performed “better” than not
using executable slicing. Better is defined in terms of absolute comparison of the
validation methods presented above.

4.2, Instantiation Performance

As discussed above the pre-processing of the data set produced four data
slices: whole, data, code and a combination of data and code. It is important to
note that the results presented in this paper are just samples of the entire
breadth of experiments that were performed on this data set.

Figures 4.1 and 4.2 depict a 3-gram experiment where the dimensionality
was reduced to 500 from a range of ~500,000 to ~7,000,000, and a 4-gram
experiment where the dimensionality was reduced to 1500 from a range of
~650,000 to ~13,000,000, respectively. The upper left quadrant contains the
validation accuracy calculation results for the range of cosine similarity
threshold values. By cosine similarity threshold value, we mean that two
documents with a cosine similarity below this cut-off point are considered
dissimilar. The lower left quadrant contains the TPR calculation while the lower
right contains the calculations for precision. For each of the quadrants in the
figure we are looking for the highest peak. For example in the upper left
quadrant the highest peak would equate to the highest accuracy value for the
range of threshold values. The upper right quadrant is defined as the FPR, for
this value the lower value is the better result.

Beginning with the accuracy values (upper left quadrant) it can be seen
that a 4% increase in total accuracy can be reached by using the slicing method
(data - green line, code - blue line, combination - purple line) when compared to
not using the slicing method (whole - red line). This value can be seen in Figure
4.1 when comparing the whole set (95%) to either the code or combination of
code and data sets (both at 99%), each with threshold values of 0.25. Continuing
to use those threshold values we can turn our attention to the TPR rate where
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the executable slicing provides a 2% increase. The precision is approximately
the same but there is a 5% decrease in overall FPR. Similar results are seen as
well in Figure 4.2.

This important result of the extracted instantiations outperforming the
whole application can be seen throughout the experiment. This is a positive and
significant step in that this type of slicing of applications to make a rogue
application detection determination has not been published before at this level.
By extracting these sections from an application, the data search space becomes
much smaller and therefore allows for a faster detection time and a more
accurate detection because of the ability to include more applications in the
detection corpus. The slicing process adds a very minimal time to the
preprocessing stage. Through the entire set of experiments the prediction
processing time was decreased by as much five-fold, excluding the feature
extraction phase.

When the results are examined from a data set instantiation viewpoint
holding the remaining variables of n-gram size and dimensionality reduction size
constant, it is clear that using the extracted data set instantiations provided a
considerable increase in accuracy when compared to using the entire or whole
application. It can be further derived that the code instantiation provides better
results than the data instantiation. Even better results can be obtained by the
combination of the data and code instantiations. However, with a minimal loss
in overall prediction performance, about 1%, one could use just the code

instantiation and gain in time performance.
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Figure 4.1: 3-gram, 500-features.
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Figure 4.2: 4-gram, 1500-features.

5. Conclusions

The results support the idea that a better malicious software classifier can
be created by applying an executable slicing technique as a pre-processing step
to the technique of randomized projection. It has been shown through direct
comparison that adding the executable slicing step generates results that have a
higher accuracy value as well as better precision and recall values when
compared to the randomized projection without using the executable slicing,
pre-processing step.

There is no claim that this is a complete solution but rather a tool
designed to fit into the security administrator’s toolbox as a data point or first
pass to help reduce the number of applications needing review. This potential
reduction in the number of applications to sort through can provide an
administrator or analyst with valuable time savings by not having to analyze
applications that clearly do not contain rogue software. With more and more
applications not being developed “in-house,” this is a positive result for those
responsible for providing secure solutions.

Future efforts for this research are to expand it with the addition of
prediction algorithms from the data mining realm, for example decision trees.
Also the author plans to investigate additional dimensionality reduction methods
and techniques in order to further expand and enhance the analysis capability. It
would be very interesting to determine if similar gains can be seen using
executable slicing on other techniques. It is worth noting that this approach may
be able to detect the slight variances in different instances of a polymorphic
virus; however, this still needs to be tested. While detecting viruses which use
self-encryption is out of the scope of this effort, it would be a notable path for
future research. Additional research is also planned for determining the
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threshold values for the similarity algorithm. As seen in the results above,
determining the key factors in choosing an optimal threshold value is crucial to
gaining high confidence and to the success rate of the algorithm.
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