Detection of SSH Host Spoofing in Control Systems
Through Network Telemetry Analysis

Stanislav Ponomarev
Louisiana Tech University
Ruston, LA, 71270
spo013@latech.edu

ABSTRACT

Modern networking architecture is designed with high scal-
ability in mind. Different protocols can be encapsulated to
support different systems. Machine identifiers (IP and MAC
addresses) in network packets can be modified easily. This
modification prevents servers from determining whether the
connecting machines are allowed to communicate. Cryp-
tographic functions have been used in protocols such as Se-
cure Shell (SSH) to establish network node authenticity, but
they can be circumvented by social engineering and brute
force attacks. This research effort created a new classifier
that processes network telemetry to determine authentic-
ity of SSH clients in a control systems network. Developed
classifier, within the control systems network, was able to
differentiate with a 100% accuracy SSH connections from
machines that were transmitting identical MAC and IP ad-
dresses, and had the same RSA key for authentication.

Categories and Subject Descriptors
C.2.0 [Computer-Communication Networks|: General
—Security and protection

General Terms
Algorithms, Design, Security

Keywords

Network telemetry, Secure shell, Network latency

1. INTRODUCTION

Network models currently implemented allow for easy ac-
cess to various networked systems through a multitude of
mediums, devices, and implementations. This approach has
allowed computer networks to spread across the globe. Net-
work models create abstraction layers, and keep some infor-
mation away from the application. This reduces the abil-
ity to establish authenticity of the host transmitting the
data. [9] Because of this, tools have been developed that

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

CISR 14, April 8-10, Oak Ridge, Tennessee, USA Copyright C 2014 ACM
978-1-4503-2812-8... $15.00

Nathan Wallace
Louisiana Tech University
Ruston, LA, 71270
nsw004@latech.edu

Travis Atkison
Louisiana Tech University
Ruston, LA, 71270
atkison@Ilatech.edu

allow an attacker to perform complex data manipulations
on the network to achieve penetration of target machines.

The SSH protocol was created to allow the use and man-
agement of remote machines, without the need for the user
to be physically present. By having means to execute com-
mands on a remote machine, an attacker can perform many
tasks from planting a virus, to getting users’ sensitive data
or joining the machine to the botnet. Many approaches exist
to secure the data being transmitted by SSH, which include
various encryption schemes, and host filters. Christodor-
escu calls the problem of malicious code as a "game between
malicious code writers and researchers working on malicious
code detection” [6], but the same principle applies to many
aspects of security, including the network security.

A typical usage scenario will include an SSH server, behind
a firewall, using a set of private and public keys to limit
the access to the server only for a set of specific people on
the network. However, as the security research grows, so
does the research to circumvent security measures. Firewalls
can be penetrated [11], passwords can be decrypted [16],
and new techniques are always found to break into a secure
system.

This research effort proposes a new scheme for detecting a
network intrusion based on the meta-data that is not directly
transmitted in the packet, but rather data that is associated
with it, for example latencies, throughput, sequence timings,
etc. Unlike packet data, which can be easily altered by an
attacker, the network’s meta-data is difficult to spoof, which
makes it a perfect target for a host fingerprinting method.

2. BACKGROUND

Secure shell (SSH) protocol operates on top of the TCP/IP
stack and provides a secure connection to a machine over
an unsecured network [15]. IP protocol is connection-less
network protocol that does not guarantee the data to arrive
to the destination, and if it does arrive, it may arrive out
of order. IP protocol implements an address field which
allows IP packets to be routed to a proper destination, and
lets the destination machine know where to send the reply.
However, these fields do not guarantee that the machine at
a given address is a machine that is supposed to be there.
Changing the address of IP packets is called an IP spoofing
and allows for many different attacks [10].

IP protocol commonly utilizes Ethernet frames to allow pack-

ets to be forwarded between multiple nodes of the network
until they reach their final destination. To achieve this, Eth-
ernet frame headers contain the source and destination me-
dia access control (MAC) addresses. While IP addresses are
being assigned to different machine interfaces by network ad-
ministrators or self-configuration protocols, MAC addresses
are unique to each network interface and are assigned dur-
ing the manufacturing process of the interface’s controller
circuit [8].

Both, IP and MAC addresses can be spoofed by software,
preventing the server from being able to determine whether
the packets are arriving from an authorized location. [3,13]
That’s why SSH implements encryption based algorithms to
prevent illegal access and enforce data integrity. [4] However,
no matter how secure a cryptographic function can be, it can
be attacked with at least a brute force attack. [2] Encryption,
while effective to deter most attackers, can be broken in
many different ways. Hashes can be reversed, users can be
tricked into giving their passwords to a phishing sites, weak
passwords can be guessed. [16] To improve security scheme
of SSH protocol, features that the attacker has low control
of should be used.

There have been various studies in anomaly detection which
use data mining and machine learning facilities to detect
anomalies. [5] NetMine is a data mining type application
that specializes in understanding traffic data correlations
and interactions. [1] While implementing methodologies sim-
ilar to the ones used in this research effort, both of these
studies focus on feature generation to improve traffic qual-
ity, and network stability rather then network security.

In their works, Erman et al. [7] were able to successfully clus-
ter similar packet types by analyzing transport layer statis-
tics. By using K-Means and DBSCAN algorithms they were
able to successfully identify protocols being used, without
extracting the data from packets [7]. Sheng et al. showed
that it is possible to detect host spoofing by analyzing sta-
tistical fluctuations in received signal strength of the packets
transmitter over wireless networks [13].

Wireshark is a software network analyzer, which allows to
capture network traffic, and visualize it in real time. It also
allows system administrators to save all of the received pack-
ets for future analysis, and extract useful information about
these packets. Wireshark was used in this research effort to
extract packet arrival times into a comma separated values
format used to generate graphs and interpret the data. [12]

Though the detection approach presented in this article may
not withstand the dynamics of a typical enterprise LAN, the
approach will be beneficial in the detection of spoofed hosts
in control system LANs. Control system LANs are unique
in that hosts generally communicate in set intervals passed
on the polling protocol utilized. The developed detection
scheme will be able to determine when communication is
initiated and maintained outside of these intervals and upon
detection will alert on a possible intrusion. Furthermore,
with the use of open source tools that automate the attack
process against control systems [14], this work proves to be
fruitful as it can distinguish between legitimate and spoofed
packets.

3. METHODOLOGY

The attack model developed for this research effort was com-
posed of benign and malicious clients trying to communicate
with a secure server (Figure 2) similar to methodologies of
Sheng at al. [13] . However, instead of using received sig-
nal strength of the wireless transceiver, this research effort
is aiming to detect malicious hosts, not only on a wireless
network, but in wired networks and networks of various in-
frastructures. To achieve this, inter-packet delays were used.

Unlike the data in an Ethernet packet, the attacker has less
control of the timings of the packets being transmitted. All
of the server processed packets were captured using wire-
shark. Those packets were then graphed by time of arrival.
Figure 1 shows the generated graph. All of the protocols
that wireshark was able to identify are separated into indi-
vidual categories. After observing SSH handshake pattern,
it became evident that a classifier can be made to differen-
tiate between hosts.

10000
1000 : mDB-LSP-DISC
DHCPv6
& & HTTP
% [E N- [PERVIEVEN' WY A SSHv2
100 * - ‘ B synergy
[T == E _BEME » TCP

HUDP

10
0 5 10 15 20 25 30 35

Time(s)

Figure 1: Server’s normal operation

By looking at the relationships between packets, Erman et
al. had to use various features to be able to cluster similar
packets. [7] However, a node fingerprint can be built simply
by observing differences in sequential packet arrival times.
There are many different parameters that can affect packet
arrival times. They range from the CPU load of the node
to the load on the network between nodes. Because of this,
methodologies presented by this research are better suited
to secure connections over networks of constant or near con-
stant load, such as control system LANs.

To account for variance in the network and machine CPU
load, standard deviation was calculated over the received
samples of benign client (Figure 1). The authenticated win-
dow was built by p € [T — Sn,Z + Sn] where p is the inter-
packet arrival time, Sy is standard deviation, and Z is the
average inter-packet arrival time of the benign client.

4. EXPERIMENT

In the experimental attack scenario, an attacker was able
to gain access to a control system’s local area network. A
portable computer was attached to the system’s LAN and

used to execute the attacks. The attacker was able to gain
access to the encryption keys, an authorized user had, as well
as spoof the workstation’s MAC and IP addresses, to prevent
the secure server from recognizing or logging any potentially
malicious activity. Once the spoofing detection algorithm
was established, a second trial from a different machine is
executed to test the intrusion detection algorithm.

Data aggregation

Figure 2: Experimental Setup

4.1 Experimental setup

Secure server was running Gentoo Linux environment on In-
tel Core 2 Duo E7500 CPU, 2GB RAM, and Intel’s 82567LM-
3 ethernet controller. Benign client was running on a sepa-
rate machine of the same configuration, while the malicious
client was running Debian Linux, on a BCM2835 SoC con-
troller connected to the local area network using RTL8188CUS
802.11n WLAN Adapter. For the second attack a Windows
7 machine running on AMD Phenom II X2 555 CPU, 8GB of
RAM, and a Realteck PCle GBE family network controller
was used. All of the machines were connected with each
other though a Netgear WNDR3500 wireless router (Figure
2).

S. RESULTS

Tepdump utility was used on the secure server to log all of
the packets captured by the server’s network card during
the experiments. First experiment determined a pattern of
the proper SSH RSA handshake. The timings of SSH RSA
handshake for the benign machine can be found in Figure 3.

10000
1000 =
]

8] n
2
i = . "

100

L =

10
278 279 28 281 282 283 284 285 286 287

Time(s)
Figure 3: SSH RSA handshake

To remove the human input timings, an ssh-agent program
was used to cache the RSA decryption key. This allows the

RSA public key to be encrypted and does not require a user
input to decrypt it while calling the ssh command.

After the handshake pattern was established, both benign
and malicious clients executed an SSH connection command
to the secure server, while capturing all the packets with
tcpdump utility. SSH software was instructed to establish a
connection using a public/private key pair, execute a uname
-a command which returns a string of text and exits:

ssh secure_server uname —a

Once the experiments were finished, the differences between
packet arrival times were recorded and graphed (Figure 4).
First three benign trials are SSH sessions from the benign
machine to the secure server. Login Delta highlights the
packets that are used in authentication. Malicious trials 1
through 3 are from the portable computer, while Malicious
trial 4 is run on the verification machine. Packets of the be-
nign connection had very small deviation, which improved
detection accuracy. A classifier was then designed to mea-
sure these packet arrival differences, and decide whether a
connected host was authorized or not.

0.3

0.25

== Benign Trial 1
—#— Benign Trial 2
Benign Trial 3
=h=—RSA Handshake Pattern
=d— Malicious Trial 1
= Malicious Trial 2
Malicious Trial 3

\)
& Malicious Trial 4
-

6 7 8 9 10 11 12

Packet number

02

Time difference(s)

Figure 4: Packet arrival time differences

The variance in packet arrival times from authorized host
was measured, and standard deviation was used to deter-
mine whether the connection is authorized or not. Figure 5
shows an average arrival time, as well as the standard devia-
tion window. Each column represents a packet in a sequence
of SSH handshake authentication. Column hight shows av-
erage time between each packet being processed. Window
on top of each column represents the window of benign au-
thentication derived by p € [Z — Sn,Z + Sn]-

Same process was applied to the data extracted after a mali-
cious host attempted to log into the secure server. Figure 6
shows packet arrival differences for one of the malicious login
attempts. All of the times between processed packets were
different from the times in benign trial, allowing to classify
this connection as malicious.

6. CONCLUSIONS

Packet arrival times can be used as features in network in-
trusion detection systems from hosts within the local area
network of the system being protected. For a wired network
with constant average load, the range of values for trusted

0.045 0.045
0.04 0.04
0035 0.035
0.03 0.03
g 0025 0.025 mmmm Average
g Standard Deviation
=002 002
8
0015 0.015
0.01 0.01
0.005 0.005

o——-. —-iﬁ o
oz 3 4 & 1 8 9

5 10

Packet#

Figure 5: Standard Deviation of packet arrival dif-
ferences

012
003
01
Q025 . Nalicious Tral 1
008 —— Standard Deviation
002
006
— 0015
004
001
o 2 3 4 5 6 7 8 9 0 °

Packet#

DeltaTime(s)

Figure 6: Standard Deviation of packet arrival dif-
ferences during an attack

host is low, under 0.010 seconds, allowing for a high accuracy
detection of malicious SSH authorizations.

Inter-packet arrival times can be varied due to many external
factors, including software versions and operating systems
being used, CPU load of the host machine, and the load
of the network between the host and server. This makes
it hard for the attacker to spoof these values, but a high
variance of those features may also lead to a large allowed
authentication window, which will decrease the accuracy of
this method.

7. REFERENCES
[1] D. Apiletti, E. Baralis, T. Cerquitelli, and
V. DaAZElia. Characterizing network traffic by means
of the netmine framework. Computer Networks,
53(6):774-789, 2009.
[2] K. Apostol. Brute-force Attack. SaluPress, 2012.
[3] A. Belenky and N. Ansari. Ip traceback with

[4]

5

[6

[7]

8]

[9]

(10]
(11]

(12]

(13]

(14]

(15]

(16]

deterministic packet marking. IEEE Communications
Letters, 7(4):162-164, 2003.

M. Bellare, T. Kohno, and C. Namprempre.
Authenticated encryption in ssh: provably fixing the
ssh binary packet protocol. In Proceedings of the 9th
ACM conference on Computer and communications
security, pages 1-11. ACM, 2002.

V. Chandola, A. Banerjee, and V. Kumar. Anomaly
detection: A survey. ACM Computing Surveys
(CSUR), 41(3):15, 2009.

M. Christodorescu and S. Jha. Static analysis of
executables to detect malicious patterns. Technical
report, DTIC Document, 2006.

J. Erman, M. Arlitt, and A. Mahanti. Traffic
classification using clustering algorithms. In
Proceedings of the 2006 SIGCOMM workshop on
Mining network data, pages 281-286. ACM, 2006.

F. Guo and T.-c. Chiueh. Sequence number-based mac
address spoof detection. In Recent Advances in
Intrusion Detection, pages 309-329. Springer, 2006.
L. T. Heberlein and M. Bishop. Attack class: Address
spoofing. In Proceedings of the 19th National
Information Systems Security Conference, pages
371-377, 1996.

B. Ho and T. T. Vu. Ip spoofing.

J. LIU and G.-y. QIU. The firewall penetrating
techniques based on the inverse connection,
http-tunnel and sharing dns. Journal of Zhengzhou
University of Light Industry (Natural Science), 5:014,
2007.

A. Orebaugh, G. Ramirez, and J. Beale. Wireshark &
Ethereal network protocol analyzer toolkit. Syngress,
2006.

Y. Sheng, K. Tan, G. Chen, D. Kotz, and

A. Campbell. Detecting 802.11 mac layer spoofing
using received signal strength. In INFOCOM 2008.
The 27th Conference on Computer Communications.
IEEE, pages 1768-1776. IEEE, 2008.

N. Wallace and T. Atkison. Observing industrial
control system attacks launched via metasploit
framework. In Proceedings of the 51st ACM Southeast
Conference, ACMSE ’13, pages 22:1-22:4, New York,
NY, USA, 2013. ACM.

T. Ylonen and C. Lonvick. The secure shell (ssh)
protocol architecture. 2006.

Y. Zhang, F. Monrose, and M. K. Reiter. The security
of modern password expiration: an algorithmic
framework and empirical analysis. In Proceedings of
the 17th ACM conference on Computer and
communications security, pages 176-186. ACM, 2010.

