
Using an Information Retrieval Technique to Discover Malicious Software

Travis ATKISON
Department of Computer Science and Engineering, Mississippi State University

Starkville, MS 39762, United States

ABSTRACT

This paper describes a research effort to detect
unknown, known or variances of known malicious
software using an information retrieval technique
known as cosine similarity. Document similarity
techniques, such as cosine similarity, have been
used with great success in several document
retrieval applications. By following the standard
information retrieval methodology, software, in
machine readable format, is regarded as documents
in the corpus. These “documents” may or may not
have a known malicious intent. The query is a piece
of software, again in machine readable format,
which contains a certain type of malicious software.
This methodology provides an ability to search the
corpus with a query and retrieve/identify potentially
malicious software as well as other instances of the
same type of vulnerability. This retrieval is based
on the similarity of the query to a given document in
the corpus. The subsequent use of an information
visualization technique will allow for quickly and
clearly finding the malicious software and will
provide the ability for finding similar, potentially
new types or variances of malicious behavior.

Keywords: malicious software detection,
information retrieval, n-gram analysis, cosine
similarity

1. INTRODUCTION

 In general, consumers depend on software
development firms to deliver their software needs.
This includes, but is not limited to, the operating
systems on each machine, virus detection engines,
and firewall systems. Even specialized applications
for corporate business needs are often purchased
rather than developed “in-house.” The outsourcing
of application development coupled with
globalization of the software development market
means that it is becoming more and more abstract as
to where software is being developed and by whom.

This presents a difficult security problem for the
consumer in that developers of computing
application may not have the same philosophies or
views as the user of the application. An example
scenario could be as follows, a virus detection
developer provides a consumer with a detection
engine that ignores certain viruses or reports that the
machine is free of viruses. Another example could
involve a firewall software developer manipulating
the consumer’s system to report back to an outside
entity, without the consumer’s consent or
knowledge, information regarding network traffic
data that passes through the firewall.

No one is immune from these malicious
attacks; from the corporation to the unsuspecting
home user, everyone is at risk. The motivation
behind this research is to develop a more effective
malicious software detection tool through the use of
well known information retrieval techniques
combined with a standard information visualization
technique. The goal is to use information retrieval
to detect malicious software, either as standalone
applications or embedded within other applications.

The next section provides a short
background description of information retrieval and
discusses malicious software vulnerabilities. In
Section 3, the experimental design is discussed
including the software and data used. In Section 4,
the results are described. Finally, in Section 5 the
conclusion and future directions are presented.

2. BACKGROUND

 Evaluating the effectiveness of using an
information retrieval technique as a solution to part
of the malicious software detection problem is an
important direction in host security research.
Below, the information retrieval technique and
malicious software vulnerabilities used in our
experiments are described.

2.1. Information Retrieval
 Information retrieval traditionally is the
“part of computer science which studies the retrieval
of information (not data) from a collection of
written documents.” [3] These retrieved
documents’ aim is to “satisfy a user’s information
need.” [3] The process can be thought of as
combing through a set of documents, called the
corpus, to find a certain piece of information that
has a relationship to a given entity, called the query.
That piece of information can either be an entire
document, set of documents or a subset of a
document. Within the information retrieval
community several methods exist for finding these
pieces of relevant information. These methods
include vector space models, latent semantic
indexing models and statistical confidence models
as well as others. “Vector space models are the first
approach to represent a document as a set of terms.”
[6] As their name implies vector space models
represent their data as a vector with each dimension
being defined as a term which may or may not have
a weight associated with it. [9] One of the most
common vector space models is cosine similarity.
Cosine similarity determines the similarity between
two data vectors by measuring the angular distance
between them. “Cosine has the nice property that it
is 1.0 for identical vectors and 0.0 for orthogonal
vectors.” [10] The following is the formula used in
our work for computing cosine similarity;

Cosine Similarity (Q, D)
∑∑

∑
=

i
iD

i
iQ

i
iDiQ

ww

ww

2
,

2
,

,,

 (1)

This formula computes the similarity between a
query Q and a document D. It does so by summing
the individual components of the two entities
represented in the formula as w. The individual
components for this research are defined as n-
grams. An n-gram is “any substring of length n.”
[3] Here the gram (which will be the composite of
the substring) is a byte in hexadecimal form.
Therefore, wQi is the weight of the ith n-gram in the
query and wDi is the weight of the ith n-gram in the
document.

There have been other efforts [1, 2, 4, 5, 7,
8] to use the information retrieval concept of n-
grams as a potential for features. Henchiri et. al. [4]
and Abou-Assaleh et. al. [1, 2] both use the
Common N-Gram (CNG) analysis method, which
uses the most frequent n-grams to represent a class,
to detect rogue/malicious applications. Henchiri
further limits the number of features by imposing a

“hierarchical feature selection process”. [4]
Marceau [7] puts an interesting twist on the problem
of using n-grams as features by having “multiple-
length” grams instead of the tradition single n-
length gram. Marceau does this by first creating
and then compacting a suffix tree to a DAG. [7]
Reddy et. al. [8] develop their own unique n-gram
feature selection measure called, ‘class-wise
document frequency’

2.2. Malicious Software Vulnerabilities
 Today malicious software vulnerabilities
come in all “shapes and sizes,” from buffer
overflows to injection attacks to information
leakage attacks. As noted above there are several
instances of these vulnerabilities. Our concentration
is on information leakage vulnerability attacks.

Information leakage can be defined as when
“non-public” information is released (or leaked)
without the information owner’s knowledge or
consent. An information leakage vulnerability can
be introduced within an application at design time
through malice or through poor programming
practices (intentional versus accidental). It can also
be introduced by a malicious attacker after
deployment by being bundled with, or concealed
within, a seemingly non-threatening application.
Symantec reported in their bi-annual threat report
for the first half of 2005 that “six of the top ten
spyware (information leakage) programs were
delivered to their victim by being bundled with
some other program.” [11]

There are several methods by which a
malicious attack can induce a victim’s computer to
leak information without the knowledge or consent
of the user. A notable example of this is the
introduction of key stroke loggers into an
application. A key stoke logger is software that will
record every key that is typed on the user’s
computer. This research will not only look at key
stroke loggers but also CD key stealers and
password stealers. CD key stealers browse through
the victim’s computer registry looking for serial
numbers for any CD's that the victim may have
installed and registered. Password stealers work in
a similar way but are geared specifically for
detecting and extracting account passwords, such as
AOL, Yahoo and MSN. Each of these stealers leaks
its illicitly gathered information by packaging and
sending it to the attacker through email or directly to
an FTP server.
 This research will concentrate on detecting
malicious applications before execution while still

packaged in their transporter. This transporter is
often called a Trojan horse and the malicious
package is referred to as a Trojan. A Trojan horse,
similar to the myth, may provide a useful service
(for example, a calculator or Notepad) but once
executed performs harmful actions. We investigate
a specific kind of Trojan horse known as a binder or
dropper. Binders are applications that have the
ability to combine (or bind) two or more
applications together, yet allow them to run
autonomously when executed. This autonomous
nature allows the attacker to place a non-
threatening, useful service together with one or
more malicious applications. The unsuspecting user
then executes the application excepting only the
useful application; however, unbeknown to them the
malicious application(s) are also executed.

3. EXPERIMENT

 The following provides a description of the
components of the experimental methodology we
used. Described below are details of the software
application that we developed as well as a
description of the data set that was used in the
experiments. This section concludes with an overall
experimental design description that provides a
description of how the experiments were conducted.

3.1 Similarity Software
 The software created for this experiment
provides functionality to ingest Windows formatted
binary executables and then creates an m-
dimensional data space that contains vectors
representing those applications. In these
experiments, m is the number of total possible n-
grams that can be extracted from the ingested
applications, one dimension for each possible n-
gram. The information stored in each of the
dimensions can take on one of several possible
values; the absolute total number of occurrences of
the particular n-gram in the application, the
normalized value of the total number of occurrences
of the particular n-gram in the application or finally
a 1 if the applications contained the particular n-
gram or a 0 if it did not. Once the m-dimensional
vectors have been created the cosine similarity
algorithm is applied to the query application’s
vector and the corpus applications’ vectors. The
cosine similarity algorithm followed is the same as
shown in the Eq. (1) above. A special feature of this
software is that it has the ability to shift the n-gram

window not only by the more traditional byte offsets
but also by bit offsets. This allows for a more fine
grain tuning of the vector values, e.g., if the
malicious adversary performs bit shifting on the
malicious applications. It also provides for more
accurate similarity result calculations.

3.2 Data
 The data used for this experiment consisted
of 267 Windows formatted binary executable files
that were randomly chosen from a Windows XP
operating system. These files ranged in size from
50KB to 500KB. Integrated within the corpus were
24 files that have been infected with malicious code
using the F.B.I. (Finding, Binding and Infecting)
binder and six standalone malicious applications for
a total of 30 malicious applications. The Windows
applications infected for this experiment were
Microsoft Calculator, MS-DOS Command Prompt,
Microsoft Notepad and Microsoft 3D Pinball for
Windows. The malicious applications used were
the CDKey Harvester v0.9, Fearless KeySpy v2.0,
LttLogger v2.0, HermanAgent v1.0, ProAgent v2.0
and Recon v2.0. Each docile application was
infected with each of the malicious applications
using the F.B.I. binder to create 24 infected files.
The binder and all malicious applications are freely
available for download from the following website,
http://www.trojanfrance.com. Table 3.1 contains
short descriptions of the malicious applications used
in this experiment.

CDKey
Harvester v0.9

searches victim’s registry for
Online Game CD Keys and
sends them to the attacker
through email

Fearless KeySpy
v2.0

keystroke logger

LttLogger v2.0 keystroke logger that can
completely remove itself at a
specified time or after a specific
amount of collection

HermanAgent
v1.0

password stealer where
information is passed back to
the attacker through email

ProAgent v2.0 monitoring and surveillance tool
that captures data from
webcams, screenshots and
microphone usage

Recon v2.0 keystroke logger that can
disable anti-virus and firewall
software

Table 3.1. Descriptions of malicious applications

Figure 4.1. Discovery of malicious applications
with CD Key and Password Stealers

3.3 Design
 This section describes the overall design of
our experiment. In total six runs were
accomplished, one for each of the malicious
applications. A run is defined as having a malicious
application labeled as the query and cosine
similarity computed against the entire corpus of 267
applications. The results of these experiments are
presented below.

4. RESULTS

 As expected, if an attack occurred in the
corpus the research software had no difficulty
finding it when used as a query. For example, when
using the Fearless KeySpy application as a query
the software was able to find it. The most useful
results achieved were that the software was able to
find applications of similar malicious intent.
 Through experimentation it was discovered
that the software was able to detect malicious
applications that are of the same malicious family as
a given query and in some cases of a different but
similar family. Using the Fearless KeySpy
application as a query the software was also able to
detect the ProAgent Application. The software was
also able to detect certain other applications of
keystroke loggers, specifically the Herman
application and the Recon Agent application, using
the ProAgent application and Fearless KeySpy
application as queries. This appears to be promising
as such software should be able to detect variants of
specific types of malicious applications.

 Figure 4.1 shows the results of visualizing
three CD Key and Password Stealer applications as
queries against the entire data corpus. Notice the
large cluster of glyphs, each one representing an
application in the corpus, grouped around the origin.
These applications have similarity scores that are
near zero when compared to the query, meaning that
these applications are not similar to the query. At
the extremes of the axes we notice the three query
applications themselves. These are not in the edges
as one might expect. This is because there is a
“pull” from the other query applications that moves
them away from their corner. Other important items
to note with this figure are the number of malicious
applications discovered in the query. After
investigation we confirmed that each one of these
was indeed a malicious application, either
standalone or embedded within another application
using the F.B.I. binder. Several applications were
discovered at or around the 0.4 similarity value with
the Fearless KeySpy application query. The
ProAgent application and the CD Key Harvester
application were both able to discover themselves
embedded within other applications.

Table 4.1 defines the performance values
for the Key Stealer queries. These values include
true positive rate (TPR), false positive rate (FPR),
accuracy and precision. TPR, as known as recall, is
the ratio of positive instances that were correctly
identified. FPR is the ratio of negative instances
that were incorrectly identified. Accuracy is the
ratio of the number of positive instances, either true
positive or false positive, that were correct.
Precision is the ratio of predicted true positive
instances that were identified correctly. These
results are significant suggesting that we can
maintain a high precision, at least 90%, without
sacrificing accuracy or TPR. The methods used in
previous research, mentioned in Section 2.1, report
accuracy ratings ranging from 93% to 98%, so the
results presented here are very comparable and in
some cases outperform those other methods.

Threshold Values Performance
Metric 0.5 0.3 0.1
TPR 0.5 0.9 0.93
FPR 0 0.004 0.01
Accuracy 0.94 0.99 0.98
Precision 1 0.96 0.9

Table 4.1. Performance Values for
Key Stealer Queries

Figure 4.2. Discovery of malicious applications
with Key Stroke Loggers

Figure 4.2 is not as impressive as the

previous figure but still demonstrates the potential
of this software in detecting malicious applications.
This figure visualizes three key stroke loggers as
queries against the entire data corpus. Notice again
the large number of glyphs clustered around the
origin. At the extremes of the axes, are the three
query applications themselves. The “pull” induced
by the other queries is seen as each glyph is not in
the extreme corner of its representative query axis.
For the discovered malicious applications, after
investigation, it was determined that in all cases the
query was discovering itself embedded within
another application. The “pull” away from the true
extremes is again explained as significant similarity
value with respect to the other queries displayed in
the figure.
 Table 4.2 defines the performance values
for the Key Logger queries. Again as can be seen
on Figure 4.2 our accuracy and precision are high
but our TPR is low for comparative threshold values
to the previous experiment. This defines the point

of how threshold selection is important. By
reducing our threshold by a small amount we were
able to significantly increase our TPR at a negative
cost to our precision. It is interesting to note that at

the 0.08 threshold using only the LttLogger
application we gained the following significant
results; TPR = 0.97, FPR = 0, Accuracy = 0.99 and
Precision = 1.

5. CONCLUSION

 These results support our hypothesis that
the cosine similarity metric has merit in determining
if an application may contain a malicious
application. It is easy to see the correlations
between the given applications using the higher-
dimensional space representation.
 There is no claim that this is a complete
solution, rather a tool designed to fit into the
security administrator’s toolbox as a data point or
first pass to help reduce the number of applications
needing review. This potential reduction in number
of applications to sort through can provide an
administrator or analyst with valuable time saving
by not having to analyze applications that clearly do
not contain malicious software. With more and
more applications not being developed “in-house”
this is a positive result for those responsible for
providing secure solutions.
 Future efforts with this research effort are to
expand by the addition of prediction algorithms
from the data mining realm, for example decision
trees. Also the author plans to investigate additional
dimensionality reduction methods and techniques in
order to further expand and enhance the analysis
capability. Additional research is also planned into
determining the threshold values for the similarity
algorithm. Determining the key factors in choosing
an optimal threshold value is crucial, as can be seen
above, to gaining high confidence and to the success
rate of the algorithm.

6. ACKNOWLEDGMENTS

 The author would like to thank Dr. Ray
Vaughn and Dr. Ed Allen for their insight and
thoughtful review. The author would also like to
thank Chad Steed for his technical input with
developing the three-dimensional figures in the
document. Lastly, the author thanks Rebekah
Atkison for reviewing this document for its
grammatical content.

Threshold Values Performance
Metric 0.5 0.3 0.1 0.08
TPR 0.37 0.5 0.5 0.97
FPR 0 0 0.008 0.06
Accuracy 0.93 0.94 0.94 0.94
Precision 1 1 0.9 0.67

Table 4.2. Performance Values for
Key Logger Queries

7. REFERENCES

[1] T. Abou-Assaleh, N. Cercone, V. Keselj,

and R. Sweidan, "Detection of New
Malicious Code Using N-grams
Signatures," in Proceedings of the Second
Annual Conference on Privacy, Security
and Trust, New Brunswick, Canada, 2004,
pp. 193 - 196.

[2] T. Abou-Assaleh, N. Cercone, V. Keselj,
and R. Sweidan, "N-gram-based Detection
of New Malicious Code," in Proceedings of
the 28th Annual International Computer
Software and Applications Conference,
2004. COMPSAC 2004. vol. 2, 2004.

[3] R. Baeza-Yates and B. Ribeiro-Neto,
Modern Information Retrieval. Harlow,
England: Addison Wesley, 1999.

[4] O. Henchiri and N. Japkowicz, "A Feature
Selection and Evaluation Scheme for
Computer Virus Detection," Data Mining,
2006. ICDM’06. Sixth International
Conference on, pp. 891-895, 2006.

[5] J. O. Kephart, G. B. Sorkin, W. C. Arnold,
D. M. Chess, G. J. Tesauro, and S. R.
White, "Biologically inspired defenses
against computer viruses," in Proceedings
of the Fourteenth International Joint
Conference on Artificial Intellgence, San
Francisco, CA, 1995, pp. 985 - 996.

[6] N. Liu, B. Zhang, J. Yan, Q. Yang, S. Yan,
Z. Chen, F. Bai, and W.-Y. Ma, "Learning
Similarity Measures in Non-Orthogonal
Space," in Proceedings of the Thirteenth
ACM International Conference on
Information and Knowledge Management
Washington, D.C., USA: ACM Press, 2004,
pp. 334 - 341.

[7] C. Marceau, "Characterizing the Behavior
of a Program Using Multiple-Length N-
grams," in Proceedings of the 2000
workshop on New security paradigms
Ballycotton, County Cork, Ireland: ACM,
2000.

[8] D. K. S. Reddy and A. K. Pujari, "N-gram
analysis for computer virus detection,"
Journal in Computer Virology, vol. 2, pp.
231 - 239, 2006.

[9] G. Salton, A. Wong, and C. S. Yang, "A
vector space model for automatic indexing,"
Communications of the ACM, vol. 18, pp.
613-620, 1975.

[10] A. Singhal, "Modern Information Retrieval:
A Brief Overview," Bulletin of the
Technical Committee on Data Engineering,
vol. 24, pp. 35 - 43, 2001.

[11] Symantec, "Symantec Internet Security
Threat Report: Trends for January 05 - June
05," September 2005.

