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ABSTRACT 
 
This paper describes a research effort to detect 
unknown, known or variances of known malicious 
software using an information retrieval technique 
known as cosine similarity.  Document similarity 
techniques, such as cosine similarity, have been 
used with great success in several document 
retrieval applications.  By following the standard 
information retrieval methodology, software, in 
machine readable format, is regarded as documents 
in the corpus.  These “documents” may or may not 
have a known malicious intent.  The query is a piece 
of software, again in machine readable format, 
which contains a certain type of malicious software.  
This methodology provides an ability to search the 
corpus with a query and retrieve/identify potentially 
malicious software as well as other instances of the 
same type of vulnerability.  This retrieval is based 
on the similarity of the query to a given document in 
the corpus.  The subsequent use of an information 
visualization technique will allow for quickly and 
clearly finding the malicious software and will 
provide the ability for finding similar, potentially 
new types or variances of malicious behavior. 
 
Keywords: malicious software detection, 
information retrieval, n-gram analysis, cosine 
similarity 
 
 
1. INTRODUCTION 
 
 In general, consumers depend on software 
development firms to deliver their software needs.  
This includes, but is not limited to, the operating 
systems on each machine, virus detection engines, 
and firewall systems.  Even specialized applications 
for corporate business needs are often purchased 
rather than developed “in-house.”  The outsourcing 
of application development coupled with 
globalization of the software development market 
means that it is becoming more and more abstract as 
to where software is being developed and by whom.  

This presents a difficult security problem for the 
consumer in that developers of computing 
application may not have the same philosophies or 
views as the user of the application.  An example 
scenario could be as follows, a virus detection 
developer provides a consumer with a detection 
engine that ignores certain viruses or reports that the 
machine is free of viruses.  Another example could 
involve a firewall software developer manipulating 
the consumer’s system to report back to an outside 
entity, without the consumer’s consent or 
knowledge, information regarding network traffic 
data that passes through the firewall. 

No one is immune from these malicious 
attacks; from the corporation to the unsuspecting 
home user, everyone is at risk.  The motivation 
behind this research is to develop a more effective 
malicious software detection tool through the use of 
well known information retrieval techniques 
combined with a standard information visualization 
technique.  The goal is to use information retrieval 
to detect malicious software, either as standalone 
applications or embedded within other applications. 

The next section provides a short 
background description of information retrieval and 
discusses malicious software vulnerabilities.  In 
Section 3, the experimental design is discussed 
including the software and data used.  In Section 4, 
the results are described.  Finally, in Section 5 the 
conclusion and future directions are presented.  
 
 
2. BACKGROUND 
 
 Evaluating the effectiveness of using an 
information retrieval technique as a solution to part 
of the malicious software detection problem is an 
important direction in host security research.  
Below, the information retrieval technique and 
malicious software vulnerabilities used in our 
experiments are described. 
 
 



2.1. Information Retrieval 
 Information retrieval traditionally is the 
“part of computer science which studies the retrieval 
of information (not data) from a collection of 
written documents.” [3]  These retrieved 
documents’ aim is to “satisfy a user’s information 
need.” [3]  The process can be thought of as 
combing through a set of documents, called the 
corpus, to find a certain piece of information that 
has a relationship to a given entity, called the query.  
That piece of information can either be an entire 
document, set of documents or a subset of a 
document.  Within the information retrieval 
community several methods exist for finding these 
pieces of relevant information.  These methods 
include vector space models, latent semantic 
indexing models and statistical confidence models 
as well as others.  “Vector space models are the first 
approach to represent a document as a set of terms.” 
[6]  As their name implies vector space models 
represent their data as a vector with each dimension 
being defined as a term which may or may not have 
a weight associated with it. [9]  One of the most 
common vector space models is cosine similarity.  
Cosine similarity determines the similarity between 
two data vectors by measuring the angular distance 
between them.  “Cosine has the nice property that it 
is 1.0 for identical vectors and 0.0 for orthogonal 
vectors.” [10]  The following is the formula used in 
our work for computing cosine similarity; 

Cosine Similarity (Q, D)
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This formula computes the similarity between a 
query Q and a document D.  It does so by summing 
the individual components of the two entities 
represented in the formula as w.  The individual 
components for this research are defined as n-
grams.  An n-gram is “any substring of length n.” 
[3]  Here the gram (which will be the composite of 
the substring) is a byte in hexadecimal form.  
Therefore, wQi is the weight of the ith n-gram in the 
query and wDi is the weight of the ith n-gram in the 
document. 

There have been other efforts [1, 2, 4, 5, 7, 
8] to use the information retrieval concept of n-
grams as a potential for features.  Henchiri et. al. [4] 
and Abou-Assaleh et. al. [1, 2] both use the 
Common N-Gram (CNG) analysis method, which 
uses the most frequent n-grams to represent a class, 
to detect rogue/malicious applications.  Henchiri 
further limits the number of features by imposing a 

“hierarchical feature selection process”. [4]  
Marceau [7] puts an interesting twist on the problem 
of using n-grams as features by having “multiple-
length” grams instead of the tradition single n-
length gram.  Marceau does this by first creating 
and then compacting a suffix tree to a DAG. [7]    
Reddy et. al. [8] develop their own unique n-gram 
feature selection measure called, ‘class-wise 
document frequency’ 
 
2.2. Malicious Software Vulnerabilities 
 Today malicious software vulnerabilities 
come in all “shapes and sizes,” from buffer 
overflows to injection attacks to information 
leakage attacks.  As noted above there are several 
instances of these vulnerabilities.  Our concentration 
is on information leakage vulnerability attacks.   

Information leakage can be defined as when 
“non-public” information is released (or leaked) 
without the information owner’s knowledge or 
consent.  An information leakage vulnerability can 
be introduced within an application at design time 
through malice or through poor programming 
practices (intentional versus accidental).  It can also 
be introduced by a malicious attacker after 
deployment by being bundled with, or concealed 
within, a seemingly non-threatening application.  
Symantec reported in their bi-annual threat report 
for the first half of 2005 that “six of the top ten 
spyware (information leakage) programs were 
delivered to their victim by being bundled with 
some other program.” [11] 

There are several methods by which a 
malicious attack can induce a victim’s computer to 
leak information without the knowledge or consent 
of the user.  A notable example of this is the 
introduction of key stroke loggers into an 
application.  A key stoke logger is software that will 
record every key that is typed on the user’s 
computer.  This research will not only look at key 
stroke loggers but also CD key stealers and 
password stealers.  CD key stealers browse through 
the victim’s computer registry looking for serial 
numbers for any CD's that the victim may have 
installed and registered.  Password stealers work in 
a similar way but are geared specifically for 
detecting and extracting account passwords, such as 
AOL, Yahoo and MSN.  Each of these stealers leaks 
its illicitly gathered information by packaging and 
sending it to the attacker through email or directly to 
an FTP server. 
 This research will concentrate on detecting 
malicious applications before execution while still 



packaged in their transporter.  This transporter is 
often called a Trojan horse and the malicious 
package is referred to as a Trojan.  A Trojan horse, 
similar to the myth, may provide a useful service 
(for example, a calculator or Notepad) but once 
executed performs harmful actions.  We investigate 
a specific kind of Trojan horse known as a binder or 
dropper.  Binders are applications that have the 
ability to combine (or bind) two or more 
applications together, yet allow them to run 
autonomously when executed.  This autonomous 
nature allows the attacker to place a non-
threatening, useful service together with one or 
more malicious applications.  The unsuspecting user 
then executes the application excepting only the 
useful application; however, unbeknown to them the 
malicious application(s) are also executed. 
 
 
3. EXPERIMENT 
 
 The following provides a description of the 
components of the experimental methodology we 
used.  Described below are details of the software 
application that we developed as well as a 
description of the data set that was used in the 
experiments.  This section concludes with an overall 
experimental design description that provides a 
description of how the experiments were conducted. 
 
3.1 Similarity Software 
 The software created for this experiment 
provides functionality to ingest Windows formatted 
binary executables and then creates an m-
dimensional data space that contains vectors 
representing those applications.  In these 
experiments, m is the number of total possible n-
grams that can be extracted from the ingested 
applications, one dimension for each possible n-
gram.  The information stored in each of the 
dimensions can take on one of several possible 
values; the absolute total number of occurrences of 
the particular n-gram in the application, the 
normalized value of the total number of occurrences 
of the particular n-gram in the application or finally 
a 1 if the applications contained the particular n-
gram or a 0 if it did not.  Once the m-dimensional 
vectors have been created the cosine similarity 
algorithm is applied to the query application’s 
vector and the corpus applications’ vectors.  The 
cosine similarity algorithm followed is the same as 
shown in the Eq. (1) above.  A special feature of this 
software is that it has the ability to shift the n-gram 

window not only by the more traditional byte offsets 
but also by bit offsets.  This allows for a more fine 
grain tuning of the vector values, e.g., if the 
malicious adversary performs bit shifting on the 
malicious applications.  It also provides for more 
accurate similarity result calculations.  
 
3.2 Data 
 The data used for this experiment consisted 
of 267 Windows formatted binary executable files 
that were randomly chosen from a Windows XP 
operating system.  These files ranged in size from 
50KB to 500KB.  Integrated within the corpus were 
24 files that have been infected with malicious code 
using the F.B.I. (Finding, Binding and Infecting) 
binder and six standalone malicious applications for 
a total of 30 malicious applications. The Windows 
applications infected for this experiment were 
Microsoft Calculator, MS-DOS Command Prompt, 
Microsoft Notepad and Microsoft 3D Pinball for 
Windows.  The malicious applications used were 
the CDKey Harvester v0.9, Fearless KeySpy v2.0, 
LttLogger v2.0, HermanAgent v1.0, ProAgent v2.0 
and Recon v2.0.  Each docile application was 
infected with each of the malicious applications 
using the F.B.I. binder to create 24 infected files.  
The binder and all malicious applications are freely 
available for download from the following website, 
http://www.trojanfrance.com.  Table 3.1 contains 
short descriptions of the malicious applications used 
in this experiment. 

  
 

CDKey 
Harvester v0.9 

searches victim’s registry for 
Online Game CD Keys and 
sends them to the attacker 
through email 

Fearless KeySpy 
v2.0 

keystroke logger  

LttLogger v2.0 keystroke logger that can 
completely remove itself at a 
specified time or after a specific 
amount of collection 

HermanAgent 
v1.0 

password stealer where 
information is passed back to 
the attacker through email 

ProAgent v2.0 monitoring and surveillance tool 
that captures data from 
webcams, screenshots and 
microphone usage 

Recon v2.0 keystroke logger that can 
disable anti-virus and firewall 
software 

 

Table 3.1. Descriptions of malicious applications 



Figure 4.1. Discovery of malicious applications 
with CD Key and Password Stealers 

3.3 Design 
 This section describes the overall design of 
our experiment.  In total six runs were 
accomplished, one for each of the malicious 
applications.  A run is defined as having a malicious 
application labeled as the query and cosine 
similarity computed against the entire corpus of 267 
applications.  The results of these experiments are 
presented below. 
 
 

4. RESULTS 
 
 As expected, if an attack occurred in the 
corpus the research software had no difficulty 
finding it when used as a query.  For example, when 
using the Fearless KeySpy application as a query 
the software was able to find it.  The most useful 
results achieved were that the software was able to 
find applications of similar malicious intent.   
 Through experimentation it was discovered 
that the software was able to detect malicious 
applications that are of the same malicious family as 
a given query and in some cases of a different but 
similar family.  Using the Fearless KeySpy 
application as a query the software was also able to 
detect the ProAgent Application.  The software was 
also able to detect certain other applications of 
keystroke loggers, specifically the Herman 
application and the Recon Agent application, using 
the ProAgent application and Fearless KeySpy 
application as queries.  This appears to be promising 
as such software should be able to detect variants of 
specific types of malicious applications. 

  Figure 4.1 shows the results of visualizing 
three CD Key and Password Stealer applications as 
queries against the entire data corpus.  Notice the 
large cluster of glyphs, each one representing an 
application in the corpus, grouped around the origin.  
These applications have similarity scores that are 
near zero when compared to the query, meaning that 
these applications are not similar to the query.  At 
the extremes of the axes we notice the three query 
applications themselves.  These are not in the edges 
as one might expect.  This is because there is a 
“pull” from the other query applications that moves 
them away from their corner.  Other important items 
to note with this figure are the number of malicious 
applications discovered in the query.  After 
investigation we confirmed that each one of these 
was indeed a malicious application, either 
standalone or embedded within another application 
using the F.B.I. binder.  Several applications were 
discovered at or around the 0.4 similarity value with 
the Fearless KeySpy application query.  The 
ProAgent application and the CD Key Harvester 
application were both able to discover themselves 
embedded within other applications.   

Table 4.1 defines the performance values 
for the Key Stealer queries.  These values include 
true positive rate (TPR), false positive rate (FPR), 
accuracy and precision.  TPR, as known as recall, is 
the ratio of positive instances that were correctly 
identified.  FPR is the ratio of negative instances 
that were incorrectly identified.  Accuracy is the 
ratio of the number of positive instances, either true 
positive or false positive, that were correct.  
Precision is the ratio of predicted true positive 
instances that were identified correctly.  These 
results are significant suggesting that we can 
maintain a high precision, at least 90%, without 
sacrificing accuracy or TPR.  The methods used in 
previous research, mentioned in Section 2.1, report 
accuracy ratings ranging from 93% to 98%, so the 
results presented here are very comparable and in 
some cases outperform those other methods.  

  

Threshold Values Performance 
Metric 0.5 0.3 0.1 
TPR 0.5 0.9 0.93 
FPR 0 0.004 0.01 
Accuracy 0.94 0.99 0.98 
Precision 1 0.96 0.9 

 

Table 4.1. Performance Values for  
Key Stealer Queries 



Figure 4.2. Discovery of malicious applications 
with Key Stroke Loggers 

 
Figure 4.2 is not as impressive as the 

previous figure but still demonstrates the potential 
of this software in detecting malicious applications.  
This figure visualizes three key stroke loggers as 
queries against the entire data corpus.  Notice again 
the large number of glyphs clustered around the 
origin.  At the extremes of the axes, are the three 
query applications themselves.  The “pull” induced 
by the other queries is seen as each glyph is not in 
the extreme corner of its representative query axis.  
For the discovered malicious applications, after 
investigation, it was determined that in all cases the 
query was discovering itself embedded within 
another application.  The “pull” away from the true 
extremes is again explained as significant similarity 
value with respect to the other queries displayed in 
the figure. 
 Table 4.2 defines the performance values 
for the Key Logger queries.  Again as can be seen 
on Figure 4.2 our accuracy and precision are high 
but our TPR is low for comparative threshold values 
to the previous experiment.  This defines the point 

of how threshold selection is important.  By 
reducing our threshold by a small amount we were 
able to significantly increase our TPR at a negative 
cost to our precision.  It is interesting to note that at 

the 0.08 threshold using only the LttLogger 
application we gained the following significant 
results; TPR = 0.97, FPR = 0, Accuracy = 0.99 and 
Precision = 1. 
 
 

5. CONCLUSION 
 
 These results support our hypothesis that 
the cosine similarity metric has merit in determining 
if an application may contain a malicious 
application.  It is easy to see the correlations 
between the given applications using the higher-
dimensional space representation. 
 There is no claim that this is a complete 
solution, rather a tool designed to fit into the 
security administrator’s toolbox as a data point or 
first pass to help reduce the number of applications 
needing review.  This potential reduction in number 
of applications to sort through can provide an 
administrator or analyst with valuable time saving 
by not having to analyze applications that clearly do 
not contain malicious software.  With more and 
more applications not being developed “in-house” 
this is a positive result for those responsible for 
providing secure solutions. 
 Future efforts with this research effort are to 
expand by the addition of prediction algorithms 
from the data mining realm, for example decision 
trees.  Also the author plans to investigate additional 
dimensionality reduction methods and techniques in 
order to further expand and enhance the analysis 
capability.  Additional research is also planned into 
determining the threshold values for the similarity 
algorithm.  Determining the key factors in choosing 
an optimal threshold value is crucial, as can be seen 
above, to gaining high confidence and to the success 
rate of the algorithm.  
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Threshold Values Performance 
Metric 0.5 0.3 0.1 0.08 
TPR 0.37 0.5 0.5 0.97 
FPR 0 0 0.008 0.06 
Accuracy 0.93 0.94 0.94 0.94 
Precision 1 1 0.9 0.67 

 

Table 4.2. Performance Values for  
Key Logger Queries 
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