
Applying Static Analysis to High-Dimensional Malicious
Application Detection

Sean Semple, Stanislav Ponomarev, Jan Durand, Travis Atkison
Louisiana Tech University

Ruston, LA 71270
{sms079, spo013, jrd037, atkison} @latech.edu

ABSTRACT
Signature based anti-virus systems inherently restrict the detection
of new and previously unknown types of malicious attacks. To
that end researchers are searching for methodologies to combat
this problem. One potential method is the use of static application
analysis. Using this methodology the applications are not
executed to determine whether or not they contain malicious
functionality. This paper presents a static application analysis
methodology using the information retrieval technique of n-gram
analysis and the dimensionality reduction techniques of
randomized projection and mutual information to create a
malicious application detection model. For this effort, a data set
was extracted from Microsoft Windows applications that were
either benign or possessed malicious functionality.
Dimensionality and prediction methodology was then applied.
Initial results show promise when comparing the prediction to
expected outcomes. In one performance evaluation, the Boosted
J48 algorithm achieved an accuracy of 99.08%.

General Terms
Algorithms, Performance, Reliability, Experimentation, Security,
Verification.

Keywords
Static analysis, malicious software detection, information
retrieval, n-gram analysis, randomized projection, mutual
information.

1. INTRODUCTION
With more than thirty years of propagation, computer viruses
have become increasingly mainstream. As the internet evolved
into a tool used by millions in everyday life, malicious software
has taken advantage of this effective medium to infect victims’
machines. Malware is a catch-all phrase used to refer to any
program that is designed to “harm or subvert a system’s intended
functionality” [1] and falls under several categories including
viruses, worms, and Trojans. Most consumers and companies
commonly refer to any malicious application as a virus, though
not all malicious software are viruses.

Traditionally, signature based detection is used to detect

malicious software. This involves comparing the byte sequence
of a suspected malicious application to the signatures of known
threats stored in a virus signature database. If part of the
application matches a signature in the database then the
application is flagged as malicious. Signature-based detection is
“effective when the virus code does not change significantly over
time” [2]. In fact, a single virus signature can be used to match
multiple variants of a particular virus if they all contain the base
signature code [2]. Signature-based detection is a very practical
method of malware detection and became popular due to its ease
of use and low false-positive rates [3]. However, this approach is
fundamentally limited to detecting only known threats. That is,
signature-based detection tools are incapable of detecting new and
previously unknown threats which do not contain any known
signatures. This limitation leaves signature-based anti-virus tools
completely ineffective against “zero-day” viruses until their
signature database, or virus definitions, have been updated with
the signatures of the new threats. As a result, signature-based
detection tools require frequent updates of the signature database
to keep up with new malware. This process can be very time
consuming as suspect malicious applications must first be
identified before they can be analyzed. If a malicious intent is
found, the analyst must then find a unique signature that can be
used to detect it in the wild.

Apart from being difficult to identify signatures, signature based
detection can be easily bypassed by code obfuscation. Code
obfuscation involves making changes to the syntactic properties
of the malware byte sequence while preserving program behavior.
Christodorescu et al. observed in an experiment that “three
commercial virus scanners could be subverted by very simple
obfuscation transformations.” [2] Some more advanced viruses
use several obfuscation methods to avoid signature identification
and are referred to as polymorphic or metamorphic viruses. These
viruses are equipped with mutation engines which mutate their
code, while retaining behavior [2]. The techniques employed by
metamorphic viruses are so powerful that they “make virus
detection using search strings virtually impossible.” [4]

Modern antivirus programs are employing new methods of
malware detection along with signature matching in order to keep
up with the rapidly evolving world of malware. Some antivirus
programs are using a technique called heuristic analysis which
monitors the behavior of programs to determine unknown
malware. The static heuristic analysis method is the focus of this
research. Unlike the dynamic analysis method which must run the
application in question, the static analysis method determines
behavior by examining the source code.

The purpose of this paper is to help answer the important question
of “How do we know that the software we are using is doing what
we ask it to do and nothing more?” The main focus of this effort

is to design and develop a static analysis method to assist in the
detection of malicious applications by combining techniques from
both the information retrieval and data mining fields, with
emphasis on Trojan horses.

The following section describes a background of previous work
involving static analysis, information retrieval, randomized
projection, and discusses malicious software vulnerabilities. In
Section 3, the experimental design of this work is discussed
including the software and data used. In Section 4, results
achieved are described. Finally, in Section 5 the conclusion and
future directions are presented.

2. BACKGROUND
Malicious application detection is a popular topic and has gained
a significant body of research. In essence though, all the different
research ventures can be categorized as either dynamic or static
analysis. Each approach has advantages and disadvantages. While
dynamic analysis is more robust at handling code obfuscation
because it monitors semantic characteristics, it can easily be
bypassed by programs that only exhibit malicious behavior at
certain times. It is also possible for a malicious application to
gain access to and compromise the host machine from the virtual
environment, as demonstrated by Ed Skoudis and Tom Liston
from IntelGuardians. This negates any ‘security’ a researcher had
by using the virtual environment for malicious detection. Static
analysis allows for examination of malicious code without putting
the system in danger of infection. It can also consider all possible
execution paths, thus allowing it to identify malicious behavior
that could evade dynamic analysis. However, static analysis may
be vulnerable to subversion by polymorphic and metamorphic
techniques as it examines the syntactic properties of malware.

There are many static analysis methods available for the
examination of data. One of the earlier attempts of using static
analysis to detect malicious applications produced the Malicious
Code Filter (MCF) [25]. Lo et al. used what they called “tell-tale”
signs, which were manually identified in malicious programs, to
filter out other suspicious programs which possessed the same
signs [2]. This research introduced the concept of tell-tale signs,
but did not show any results to validate the effectiveness of the
approach. Below are descriptions of major research efforts that
use various methods of static analysis to solve this detection
problem.

2.1 Information Retrieval
Information retrieval is a static analysis method available for the
examination of data. It can be thought of as the “part of computer
science which studies the retrieval of information (not data) from
a collection of written documents.” [10] This information is then
used to “satisfy a user’s information need.” [10] It can be thought
of as searching through a set of documents, called the corpus, to
find information that is relatable to a given entity, called the
query. When dealing with information retrieval, the features
extracted play a crucial role. The technique of n-gram analysis
has proven to be a successful and valuable tool for this. Several
research efforts focus on the classification of malicious
applications with the use of n-gram analysis [5, 6, 8, 9, 23, 24].
An n-gram is any substring of length n [10]. Since n-grams
overlap, they do not just capture statistics about substrings of
length n, but also capture frequencies of longer substrings [6].

There have been many efforts to use the information retrieval
technique of n-gram analysis as a feature generator. Baeza-Yates
and Ribeiro-Neto applied this technique to the field of document
authorship to determine whether William Shakespeare wrote all
the works attributed to him. Henchiri et. al. [7] and Abou-Assaleh
et. al. [5, 6] both use the Common N-Gram (CNG) analysis
method, which uses the most frequent n-grams to represent a
class, to detect malicious applications. Henchiri further limits the
number of features by imposing a “hierarchical feature selection
process”. [7] Marceau [8] suggests an interesting modification on
the problem of using n-grams as features by having “multiple-
length” grams instead of the tradition single n-length gram.
Marceau does this by first creating and then compacting a suffix
tree to a directed acyclic graph (DAG) [8]. Reddy et. al. [9]
develop their own unique n-gram feature selection measure
called, ‘class-wise document frequency’.

2.2 Dimensionality Reduction
Malware detection using the static analysis method of information
retrieval invariably creates data in extremely high dimensions.
Computing in extremely high dimensions creates a problem
known as the “curse of dimensionality.” [28] Due to this “curse of
dimensionality”, techniques must be introduced to reduce the data
size to allow for proper analysis. Two such dimensionality
reduction techniques are feature extraction and feature selection.
The feature selection technique of mutual information can be used
to select a subset of the most relevant n-gram features. In addition
to using mutual information, the feature extraction technique of
random projection can be used to compare the performance
between the two dimensionality reduction methods. Unlike
feature selection, feature extraction transforms the original subset,
either linearly or non-linearly, to a much smaller feature set while
retaining the most relevant properties. Thus, feature extraction
techniques consider the predictive information provided by all the
features in the original feature set instead of just a select few.

There have been efforts [11, 12, 22] that use randomized
projection techniques for dimensionality reduction. Hegedus et.
al. [21] applied random projection techniques to the topic of
malware detection through dynamic feature extraction. The
authors proposed a way to detect files with the highest probability
of being false negatives (malicious files that were classified as
benign).

Minnila et. al. [11] used random projection techniques to map
sequences of events and find similarities between them. Their
specific application is in the telecommunication field looking at
how to better handle network alarms. Their goal is to “show the
human analyst previous situations that resemble the current one”
[11] so that a more informed decision about the current situation
can be made. Though their proposed solution is not perfect, it
does show the promise of using randomized projections in a
similarity based application.

Bingham et. al. [12] applies randomized projections to an image
and text retrieval problem. In comparison to this research
problem, their dimensions are not as large, 2500 for images and
5000 for text but the results are still significant. The purpose of
their work was to show that compared to other more traditional
dimensionality reduction techniques, such as principle component
analysis or singular value decomposition, randomized projections
offered a greater detail of accuracy. The authors were also able to
show that there was a significant computation saving by using

randomized projections over other feature extraction techniques,
such as principle component analysis.

There have been other efforts that use mutual information
techniques for dimensionality reduction. Kolter [23, 24]
introduced the technique of mutual information as a processing
step to reduce the dimensionality of the program feature vectors.
Kolter used the information retrieval technique of n-gram analysis
to create binary feature vectors of malicious and benign programs,
which were used with machine learning algorithms to unknown
program instances.

2.3 Static Analysis Benefits
Static analysis, in this context, conventionally has been used as a
method to comb through source code to assist in identifying and
detecting malicious applications. Many examples of static
analysis exist as well as static analysis overviews, namely [13 -
16]. More recently researchers [17 - 19] have attempted to apply
these techniques to executable binaries with some success. These
research efforts are looking at many aspects of a binary including
detecting obfuscation [18] and detecting mimicry attacks [19].

Even though there are some advantages to using a dynamic
analysis methodology which is normally used by running the
possibly malicious application in a controlled or restricted
environment, there are many dangers involved. Because of these
dangers, most researchers will execute these potentially malicious
applications in virtual environments, such as VMWare or Virtual
Box. However, many malicious application writers have
designed checks that can detect whether or not the malicious
application is being executed inside of a virtual environment. If a
virtual environment is detected, the malicious code will skip over
the harmful parts of the application, therefore, going unnoticed by
the detection system. Even with the potential pitfalls, dynamic
analysis does provide real-time run-time analysis capabilities that
static analysis cannot provide.

Static analysis provides many advantages when attacking a
problem as diverse and difficult as malicious application
detection. Since the potential malicious applications are not
executed there is no chance for accidental infestation as is the
case with dynamic analysis. Though this is a positive, due to
undecidability it is “impossible to certify statically that certain
properties hold.” [20] That aside, static analysis of potential
malicious applications can be accomplished without the run-time
overhead associated with dynamic analysis techniques. By using
static analysis, an analyst can discover all possible execution
paths. Because of the ability to analyze applications without the
need to execute them, this research effort has attacked the
malicious application detection problem using static analysis
techniques. This work is done with the understanding that the
solutions created here are only one piece of the larger solution
that may include dynamic analysis or other methods.

3. EXPERIMENT
For these experiments, a set of software tools was created along
with the Waikato Environment for Knowledge Analysis (WEKA)
[26] to follow the static analysis methods of information retrieval
in conjunction with mutual information and randomized
projection. A description of the data sets used in the experiments
is described below.

3.1 Data Set
The data set used for these experiments consisted of 1622
Windows formatted binary executable files. Of these, 303 were

extracted from a fresh installation of Microsoft Windows XP, 406
were extracted from a fresh installation of Microsoft Windows
Vista, and 78 were extracted from a fresh installation of Microsoft
Windows 7. All data sets were obtained by installing the
operating system in a virtual environment which was not
connected to the internet to ensure no malicious infiltration. The
remaining 835 files were malicious Trojan horse applications that
were downloaded from various websites on the internet including
http://www.trojanfrance.com and http://vx.netlux.org.

3.2 Classification Algorithms
This subsection describes the classification algorithms used in the
performance evaluation of random projection as an effective
dimensionality reduction technique. All machine learning
algorithms were trained and tested using the WEKA machine
learning software suite, with 10-fold cross validation on the
training data set. Seven separate classification algorithms were
applied in the context of this experiment. Instance Based
Classifier, Naïve Bayes Classifier, Decision Tree, and Support
Vector Machines (SVMs) were the classifiers used. The instance-
based learner uses a k-nearest-neighbor algorithm which classifies
an instance by a majority vote of the labels of the k most similar
instances in the training set. Naïve Bayes classifiers use prior
probability of a class and the conditional probability of each
feature attribute for the specified class in order to determine the
probability that an unknown instance belongs to a particular class.
Decision trees consider all the instances in the training set and
select a feature attribute which best splits the data set into its
respective classes. The attribute that was previously selected is
then removed from future consideration and the process is
repeated recursively on each data subset. The last attribute split
creates the leaf nodes which are labeled based on a majority vote
of the class labels of its elements. For attribute selection, the J48
algorithm is used. SVMs produce a binary linear classifier which
is able to separate a data set into two distinct classes, the positive
and negative class. The method works by mapping feature vectors
of data instances into a higher dimension so that the two classes
of instances can be separated by a hyper plane. Classification is
performed by mapping an unknown instance into a higher feature
dimension and labeling it based on which side of the hyper plane
it appears. Along with these, each classifier except the Instance
Based Classifier, due to computation expense, was boosted using
the Adaptive Boosting method implemented in WEKA. These
new boosted classifiers were also used in the experiments.
Different classification algorithms provide the researcher with a
broader scope of results from the same amount of data.

3.3 Experimental Design
Six different n-gram sizes ranging from 2 to 7 were used to
produce multiple feature vectors representing the same executable
file. A binary feature weighting scheme was used for this effort,
whereby each unique n-gram was considered a feature and feature
vectors were created for each document in the data set by
assigning a ‘1’ to a vector dimension attribute if the
corresponding n-gram was present in the executable or ‘0’ if it
was not. Due to the large number of features produced through n-
gram analysis, a reduced corpus had to be created. One set was
reduced using the feature selection technique of mutual
information and the other set was reduced using the feature
extraction technique of randomized projection. For each set, three
reduced versions were created by reducing each vector to a
feature set size of 500, 1000, and 1500 using the respective

dimensionality reduction technique. Various training algorithms
were then used to classify data as either malicious or benign based
off of the data given to it.

4. RESULTS
Using the methods and techniques described above, a software
tool was created which received the raw executable files as inputs
and produced corpuses of mutual information and random
projection reduced n-gram feature vectors in a format consumable
by WEKA. WEKA was then used to train and test classifiers
using the various classification algorithms.

In order to make a comparison of performance values, a system
for determining accuracy had to be introduced. These values
include true positive rate (TPR), false positive rate (FPR), area
under the curve (AUC) and accuracy. TPR, also known as recall,
“is the proportion of retrieved applications that are relevant,
measured by the ratio of the number of relevant retrieved
applications to the total number of retrieved applications,” [27] or
the ratio of predicted true positive instances that were identified
correctly. The TPR represents the number of malicious instances
classified as malicious; the FPR represents the number of benign
instances classified as malicious; the AUC measure represents the
area under the receiver operating characteristic curve generated
by the classifier; the accuracy represents the number of instances
correctly classified by the classifier.

 Presented below is a sample of the results of the experimental
runs. Figure 1 illustrates the average accuracies of each classifier
with respect to n-gram size. The total accuracy was greatest with
an n = 3 and was lowest with values at the end of the spectrum. At
n = 4, the accuracy dropped drastically but leveled out slightly at
n = 5. Figure 2 illustrates the average accuracy of random
projection classifiers against n-gram size. It shows that with an n
= 4 gram size, peak accuracy can be achieved. Similarly to the
mutual information classifier, after achieving peak performance,
average accuracy dropped at n = 5 by over 1%. Using features
with an n-gram size of 2 or 7 generally produced less accurate
classifiers. This is possibly due to some important information
not being provided by an n-gram of size 2, and extraneous
information which could impair the classifiers with an n-gram of
size 7. Results show that n-grams of length 3 and 4 were most
accurate, particularly n-gram of length 3 for the mutual
information trained classifiers and n-grams of length 4 for random
projection trained classifiers. With an n-gram of length 3 used on
the mutual information classifiers with 1500 features, the best
results show a significant increase in detection accuracy over
random projection and previous research efforts. Table 1 shows
the performance results for a data set reduced by mutual
information with a 3-gram window with 1500 features. This table
shows how the static analysis technique of n-gram analysis yields
extremely high true positive rates for both the boosted J48
classifier and SVM classifier. All classifiers except the Naïve
Bayes classifier achieved a TPR of over 0.98. Peak accuracy was
achieved with the SVM classifiers at 99.26%. The SVM
classifiers also had the lowest FPR of 0.009. Though mutual
information trained classifiers produced the most accurate results
with 3-grams, random projection trained classifiers were most
accurate with 4-grams. The SVM and Boosted SVM classifiers
were able to accurately label malicious applications 99.6% of the
time while labeling benign applications as malicious only 1.6% of
the time. Both classifiers resulted with an accuracy of 99.08%.

Figure 1: Average accuracy of each mutual information
classifier vs. n-gram size.

Figure 2: Average accuracy of all random projection
classifiers vs. n-gram size.

Table 1: Performance results for mutual information, 3-
grams, 1500 features.

5. Conclusions
The results of these experiments indicate that using static analysis
techniques along with classification algorithms and information
retrieval techniques has merit and can be used to determine if an
application may contain malicious functionality. These
experiments have shown that the results are accurate and better
than some suggested solutions in literature.

This is by no means a perfect solution yet, but a tool which when
combined with other tools could yield a better way to defend data
and develop more accurate prediction software. This research
could be used by an analyst to narrow down the amount of
potentially malicious applications, saving valuable time. This
technique of static analysis is a useful pathway for research not
only in malicious application removal, but other applications
where large data sets are compiled.

Future efforts for this research include expanding information
retrieval techniques and creating new ways to analyze data. New

Algorithm TPR FPR AUC Acc. %

J48 0.984 0.019 0.983 98.27

Boosted J48 0.99 0.01 0.996 99.01

SVM 0.994 0.009 0.992 99.26

Boosted SVM 0.994 0.009 0.992 99.26

Naïve Bayes 0.931 0.096 0.959 91.98

Boosted Naïve Bayes 0.994 0.019 0.996 98.83

KNN, k = 5 0.993 0.026 0.997 98.46

dimensionality reduction techniques will also be explored in order
for the researchers to gain the highest result accuracy.
Determining the right correlation of techniques is key to a high
success rate in the experimentation with static analysis.

6. ACKNOWLEDGMENTS
This material is based upon work supported by the U.S. Air
Force, Air Force Research Laboratory under Award No. FA9550-
10-1-0289.

7. REFERENCES
[1] G. McGraw and G. Morisett, "Attacking Malicious Code: A

Report to the Infosec Research Council," IEEE Software,
vol. 17, no. 5, pp. 33-41, Sep/Oct 2000.

[2] M. Christodorescu and S. Jha, "Static Analysis of
Executables to Detect Malicious Patterns," in Proceedings of
the 12th Conference on USENIX Security Symposium,
Berkeley, CA, USA, 2003, p. 12.

[3] M. Christodorescu, S. Jha, M. D. Preda, and S. Debray, "A
Semantics-Based Approach to Malware Detection," in
Proceedings of the 34th Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, Nice,
France, Jan. 2007, pp. 377-388.

[4] E. Konstantinou and S. Wolthusen, "Metamorphic Virus:
Analysis and Detection," Information Security Group, Royal
Holloway, University of London, Technical Report RHUL-
MA-2008-02, 2008.

[5] T. Abou-Assaleh, N. Cercone, V. Keselj, and R. Sweidan,
"Detection of New Malicious Code Using N-grams
Signatures," Proceedings of the 2nd Annual Conference on
Privacy, Security and Trust, New Brunswick, Canada, 2004,
pp. 193 - 196.

[6] T. Abou-Assaleh, N. Cercone, V. Keselj, and R. Sweidan,
"N-gram-based Detection of New Malicious Code,"
Proceedings of the 28th Annual International Computer
Software and Applications Conference, COMPSAC. vol. 2,
2004.

[7] O. Henchiri and N. Japkowicz, "A Feature Selection and
Evaluation Scheme for Computer Virus Detection," 6th
International Conference on Data Mining, ICDM'06, 2006,
pp. 891-895.

[8] C. Marceau, "Characterizing the Behavior of a Program
Using Multiple-Length N-grams," Proceedings of the 2000
Workshop on New Security Paradigms, Ballycotton, County
Cork, Ireland: ACM, 2000.

[9] D. K. S. Reddy and A. K. Pujari, "N-gram analysis for
computer virus detection," Journal in Computer Virology,
vol. 2, no. 3, 2006, pp. 231 - 239.

[10] R. Baeza-Yates and B. Ribeiro-Neto, Modern Information
Retrieval, Harlow, England, Addison Wesley, 1999.

[11] H. Mannila and J. K. Seppänen, "Finding similar situations
in sequences of events," 1st SIAM International Conference
on Data Mining, 2001,

[12] E. Bingham and H. Mannila, "Random projection in
dimensionality reduction: applications to image and text
data," Proceedings of the 7th ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining,
2001, pp. 245-250.

[13] P. Chandra, B. Chess, and J. Steven, "Putting the tools to
work: How to succeed with source code analysis," IEEE
Security & Privacy, vol. 4, no. 3, 2006, pp. 80-83.

[14] D. Hovemeyer and W. Pugh, "Finding bugs is easy,"
Companion to the 19th annual ACM SIGPLAN conference
on Object-oriented programming systems, languages, and
applications Vancouver, BC, CANADA: ACM, 2004.

[15] D. Wagner and R. Dean, "Intrusion detection via static
analysis," 2001, pp. 156-168.

[16] Y. Zhang, J. Rilling, and V. Haarslev, "An Ontology-based
Approach to Software Comprehension-Reasoning about
Security Concerns," 2006.

[17] J. Bergeron, M. Debbabi, M. M. Erhioui, and B. Ktari,
"Static analysis of binary code to isolate malicious
behaviors," IEEE 8th International Workshops on Enabling
Technologies: Infrastructure for Collaborative Enterprises,
1999.(WET ICE'99) Proceedings, 1999, pp. 184-189.

[18] J. Lin and D. Gunopulos, "Dimensionality reduction by
random projection and latent semantic indexing,"
Proceedings of the Text Mining Workshop at the 3rd SIAM
International Conference on Data Mining, 2003.

[19] C. Kruegel, E. Kirda, D. Mutz, W. Robertson, and G. Vigna,
"Automating mimicry attacks using static binary analysis,"

[20] J. Bergeron, M. Debbabi, J. Desharnais, M. M. Erhioui, Y.
Lavoie, N. Tawbi, and M. Erhioui, "Static Detection of
Malicious Code in Executable Programs," Symposium on
Requirements Engineering for Information Security,
Indianapolis, IN, 2001.

[21] J. Hegedus, Y. Miche, A. Ilin, and A. Lendasse, 2011,
“Methodology for Behavioral-based Malware Analysis and
Detection using Random Projections and K-Nearest
Neighbors Classifiers,” Hainan, 2011.

[22] C. H. Papadimitriou, P. Raghavan, H. Tamaki, and S.
Vempala, "Latent Semantic Indexing: A Probabilistic
Analysis," Journal of Computer and System Sciences, vol.
61, no. 2, 2000, pp. 217-235.

[23] J. Z. Kolter and M. A. Maloof, "Learning to Detect
Malicious Executables in the Wild," in Proceedings of the
10th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, Seattle, WA, Aug.
2004, pp. 470-478.

[24] J. Z. Kolter and M. A. Maloof, "Learning to Detect and
Classify Malicious Executables in the Wild," The Journal of
Machine Learning Research,

[25] R. W. Lo, K. N. Levit, and R. A. Olsson, “MCF: A
Malicious Code Filter,” Computers & Security, vol. 14,1995.

[26] I. H. Witten and E. Frank, Data Mining: Practical Machine
Learning Tools and Techniques, 2nd ed. San Francisco, CA,
USA: Morgan Kaufmann, 2005.

[27] G. Salton, A. Wong, and C. S. Yang, "A vector space model
for automatic indexing," Communications of the ACM, vol.
18, no. 11, 1975, pp. 613-620.

[28] R. Bellman, Adaptive Control Processes: A Guided Tour.:
Princeton University Press, 1961.

