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ABSTRACT 
Signature based anti-virus systems inherently restrict the detection 
of new and previously unknown types of malicious attacks.  To 
that end researchers are searching for methodologies to combat 
this problem.  One potential method is the use of static application 
analysis.  Using this methodology the applications are not 
executed to determine whether or not they contain malicious 
functionality.  This paper presents a static application analysis 
methodology using the information retrieval technique of n-gram 
analysis and the dimensionality reduction techniques of 
randomized projection and mutual information to create a 
malicious application detection model. For this effort, a data set 
was extracted from Microsoft Windows applications that were 
either benign or possessed malicious functionality. 
Dimensionality and prediction methodology was then applied.  
Initial results show promise when comparing the prediction to 
expected outcomes.  In one performance evaluation, the Boosted 
J48 algorithm achieved an accuracy of 99.08%. 
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1. INTRODUCTION 
With more than thirty years of propagation, computer viruses 
have become increasingly mainstream.  As the internet evolved 
into a tool used by millions in everyday life, malicious software 
has taken advantage of this effective medium to infect victims’ 
machines.  Malware is a catch-all phrase used to refer to any 
program that is designed to “harm or subvert a system’s intended 
functionality” [1] and falls under several categories including 
viruses, worms, and Trojans. Most consumers and companies 
commonly refer to any malicious application as a virus, though 
not all malicious software are viruses.  

Traditionally, signature based detection is used to detect 

malicious software.  This involves comparing the byte sequence 
of a suspected malicious application to the signatures of known 
threats stored in a virus signature database. If part of the 
application matches a signature in the database then the 
application is flagged as malicious. Signature-based detection is 
“effective when the virus code does not change significantly over 
time” [2]. In fact, a single virus signature can be used to match 
multiple variants of a particular virus if they all contain the base 
signature code [2]. Signature-based detection is a very practical 
method of malware detection and became popular due to its ease 
of use and low false-positive rates [3]. However, this approach is 
fundamentally limited to detecting only known threats. That is, 
signature-based detection tools are incapable of detecting new and 
previously unknown threats which do not contain any known 
signatures. This limitation leaves signature-based anti-virus tools 
completely ineffective against “zero-day” viruses until their 
signature database, or virus definitions, have been updated with 
the signatures of the new threats. As a result, signature-based 
detection tools require frequent updates of the signature database 
to keep up with new malware. This process can be very time 
consuming as suspect malicious applications must first be 
identified before they can be analyzed. If a malicious intent is 
found, the analyst must then find a unique signature that can be 
used to detect it in the wild.  

Apart from being difficult to identify signatures, signature based 
detection can be easily bypassed by code obfuscation.  Code 
obfuscation involves making changes to the syntactic properties 
of the malware byte sequence while preserving program behavior. 
Christodorescu et al. observed in an experiment that “three 
commercial virus scanners could be subverted by very simple 
obfuscation transformations.” [2] Some more advanced viruses 
use several obfuscation methods to avoid signature identification 
and are referred to as polymorphic or metamorphic viruses. These 
viruses are equipped with mutation engines which mutate their 
code, while retaining behavior [2]. The techniques employed by 
metamorphic viruses are so powerful that they “make virus 
detection using search strings virtually impossible.” [4] 

Modern antivirus programs are employing new methods of 
malware detection along with signature matching in order to keep 
up with the rapidly evolving world of malware. Some antivirus 
programs are using a technique called heuristic analysis which 
monitors the behavior of programs to determine unknown 
malware. The static heuristic analysis method is the focus of this 
research. Unlike the dynamic analysis method which must run the 
application in question, the static analysis method determines 
behavior by examining the source code. 

The purpose of this paper is to help answer the important question 
of “How do we know that the software we are using is doing what 
we ask it to do and nothing more?” The main focus of this effort 

 

 



is to design and develop a static analysis method to assist in the 
detection of malicious applications by combining techniques from 
both the information retrieval and data mining fields, with 
emphasis on Trojan horses. 

The following section describes a background of previous work 
involving static analysis, information retrieval, randomized 
projection, and discusses malicious software vulnerabilities. In 
Section 3, the experimental design of this work is discussed 
including the software and data used. In Section 4, results 
achieved are described.  Finally, in Section 5 the conclusion and 
future directions are presented. 

2. BACKGROUND 
Malicious application detection is a popular topic and has gained 
a significant body of research. In essence though, all the different 
research ventures can be categorized as either dynamic or static 
analysis. Each approach has advantages and disadvantages. While 
dynamic analysis is more robust at handling code obfuscation 
because it monitors semantic characteristics, it can easily be 
bypassed by programs that only exhibit malicious behavior at 
certain times.  It is also possible for a malicious application to 
gain access to and compromise the host machine from the virtual 
environment, as demonstrated by Ed Skoudis and Tom Liston 
from IntelGuardians. This negates any ‘security’ a researcher had 
by using the virtual environment for malicious detection.  Static 
analysis allows for examination of malicious code without putting 
the system in danger of infection.  It can also consider all possible 
execution paths, thus allowing it to identify malicious behavior 
that could evade dynamic analysis. However, static analysis may 
be vulnerable to subversion by polymorphic and metamorphic 
techniques as it examines the syntactic properties of malware.  

There are many static analysis methods available for the 
examination of data. One of the earlier attempts of using static 
analysis to detect malicious applications produced the Malicious 
Code Filter (MCF) [25]. Lo et al. used what they called “tell-tale” 
signs, which were manually identified in malicious programs, to 
filter out other suspicious programs which possessed the same 
signs [2]. This research introduced the concept of tell-tale signs, 
but did not show any results to validate the effectiveness of the 
approach. Below are descriptions of major research efforts that 
use various methods of static analysis to solve this detection 
problem. 

2.1 Information Retrieval 
Information retrieval is a static analysis method available for the 
examination of data.  It can be thought of as the “part of computer 
science which studies the retrieval of information (not data) from 
a collection of written documents.” [10] This information is then 
used to “satisfy a user’s information need.” [10] It can be thought 
of as searching through a set of documents, called the corpus, to 
find information that is relatable to a given entity, called the 
query. When dealing with information retrieval, the features 
extracted play a crucial role.  The technique of n-gram analysis 
has proven to be a successful and valuable tool for this.  Several 
research efforts focus on the classification of malicious 
applications with the use of n-gram analysis [5, 6, 8, 9, 23, 24]. 
An n-gram is any substring of length n [10]. Since n-grams 
overlap, they do not just capture statistics about substrings of 
length n, but also capture frequencies of longer substrings [6]. 

There have been many efforts to use the information retrieval 
technique of n-gram analysis as a feature generator. Baeza-Yates 
and Ribeiro-Neto applied this technique to the field of document 
authorship to determine whether William Shakespeare wrote all 
the works attributed to him. Henchiri et. al. [7] and Abou-Assaleh 
et. al. [5, 6] both use the Common N-Gram (CNG) analysis 
method, which uses the most frequent n-grams to represent a 
class, to detect malicious applications.  Henchiri further limits the 
number of features by imposing a “hierarchical feature selection 
process”. [7] Marceau [8] suggests an interesting modification on 
the problem of using n-grams as features by having “multiple-
length” grams instead of the tradition single n-length gram.  
Marceau does this by first creating and then compacting a suffix 
tree to a directed acyclic graph (DAG) [8]. Reddy et. al. [9] 
develop their own unique n-gram feature selection measure 
called, ‘class-wise document frequency’. 

2.2 Dimensionality Reduction 
Malware detection using the static analysis method of information 
retrieval invariably creates data in extremely high dimensions.  
Computing in extremely high dimensions creates a problem 
known as the “curse of dimensionality.” [28] Due to this “curse of 
dimensionality”, techniques must be introduced to reduce the data 
size to allow for proper analysis. Two such dimensionality 
reduction techniques are feature extraction and feature selection. 
The feature selection technique of mutual information can be used 
to select a subset of the most relevant n-gram features. In addition 
to using mutual information, the feature extraction technique of 
random projection can be used to compare the performance 
between the two dimensionality reduction methods. Unlike 
feature selection, feature extraction transforms the original subset, 
either linearly or non-linearly, to a much smaller feature set while 
retaining the most relevant properties.  Thus, feature extraction 
techniques consider the predictive information provided by all the 
features in the original feature set instead of just a select few. 

There have been efforts [11, 12, 22] that use randomized 
projection techniques for dimensionality reduction. Hegedus et. 
al. [21] applied random projection techniques to the topic of 
malware detection through dynamic feature extraction. The 
authors proposed a way to detect files with the highest probability 
of being false negatives (malicious files that were classified as 
benign). 

Minnila et. al. [11] used random projection techniques to map 
sequences of events and find similarities between them.  Their 
specific application is in the telecommunication field looking at 
how to better handle network alarms.  Their goal is to “show the 
human analyst previous situations that resemble the current one” 
[11] so that a more informed decision about the current situation 
can be made.  Though their proposed solution is not perfect, it 
does show the promise of using randomized projections in a 
similarity based application. 

Bingham et. al. [12] applies randomized projections to an image 
and text retrieval problem.  In comparison to this research 
problem, their dimensions are not as large, 2500 for images and 
5000 for text but the results are still significant.  The purpose of 
their work was to show that compared to other more traditional 
dimensionality reduction techniques, such as principle component 
analysis or singular value decomposition, randomized projections 
offered a greater detail of accuracy.  The authors were also able to 
show that there was a significant computation saving by using 



randomized projections over other feature extraction techniques, 
such as principle component analysis. 

There have been other efforts that use mutual information 
techniques for dimensionality reduction. Kolter [23, 24] 
introduced the technique of mutual information as a processing 
step to reduce the dimensionality of the program feature vectors. 
Kolter used the information retrieval technique of n-gram analysis 
to create binary feature vectors of malicious and benign programs, 
which were used with machine learning algorithms to unknown 
program instances. 

2.3 Static Analysis Benefits 
Static analysis, in this context, conventionally has been used as a 
method to comb through source code to assist in identifying and 
detecting malicious applications.  Many examples of static 
analysis exist as well as static analysis overviews, namely [13 - 
16].  More recently researchers [17 - 19] have attempted to apply 
these techniques to executable binaries with some success.  These 
research efforts are looking at many aspects of a binary including 
detecting obfuscation [18] and detecting mimicry attacks [19].  

Even though there are some advantages to using a dynamic 
analysis methodology which is normally used by running the 
possibly malicious application in a controlled or restricted 
environment, there are many dangers involved.  Because of these 
dangers, most researchers will execute these potentially malicious 
applications in virtual environments, such as VMWare or Virtual 
Box.  However, many malicious application writers have 
designed checks that can detect whether or not the malicious 
application is being executed inside of a virtual environment.  If a 
virtual environment is detected, the malicious code will skip over 
the harmful parts of the application, therefore, going unnoticed by 
the detection system.   Even with the potential pitfalls, dynamic 
analysis does provide real-time run-time analysis capabilities that 
static analysis cannot provide. 

Static analysis provides many advantages when attacking a 
problem as diverse and difficult as malicious application 
detection.  Since the potential malicious applications are not 
executed there is no chance for accidental infestation as is the 
case with dynamic analysis.  Though this is a positive, due to 
undecidability it is “impossible to certify statically that certain 
properties hold.” [20] That aside, static analysis of potential 
malicious applications can be accomplished without the run-time 
overhead associated with dynamic analysis techniques.  By using 
static analysis, an analyst can discover all possible execution 
paths.  Because of the ability to analyze applications without the 
need to execute them, this research effort has attacked the 
malicious application detection problem using static analysis 
techniques.  This work is done with the understanding that the 
solutions created here are only one piece of the larger solution 
that may include dynamic analysis or other methods. 

3. EXPERIMENT 
For these experiments, a set of software tools was created along 
with the Waikato Environment for Knowledge Analysis (WEKA) 
[26] to follow the static analysis methods of information retrieval 
in conjunction with mutual information and randomized 
projection.  A description of the data sets used in the experiments 
is described below.  

3.1 Data Set 
The data set used for these experiments consisted of 1622 
Windows formatted binary executable files. Of these, 303 were 

extracted from a fresh installation of Microsoft Windows XP, 406 
were extracted from a fresh installation of Microsoft Windows 
Vista, and 78 were extracted from a fresh installation of Microsoft 
Windows 7. All data sets were obtained by installing the 
operating system in a virtual environment which was not 
connected to the internet to ensure no malicious infiltration. The 
remaining 835 files were malicious Trojan horse applications that 
were downloaded from various websites on the internet including 
http://www.trojanfrance.com and http://vx.netlux.org.  

3.2 Classification Algorithms 
This subsection describes the classification algorithms used in the 
performance evaluation of random projection as an effective 
dimensionality reduction technique. All machine learning 
algorithms were trained and tested using the WEKA machine 
learning software suite, with 10-fold cross validation on the 
training data set. Seven separate classification algorithms were 
applied in the context of this experiment. Instance Based 
Classifier, Naïve Bayes Classifier, Decision Tree, and Support 
Vector Machines (SVMs) were the classifiers used. The instance-
based learner uses a k-nearest-neighbor algorithm which classifies 
an instance by a majority vote of the labels of the k most similar 
instances in the training set. Naïve Bayes classifiers use prior 
probability of a class and the conditional probability of each 
feature attribute for the specified class in order to determine the 
probability that an unknown instance belongs to a particular class. 
Decision trees consider all the instances in the training set and 
select a feature attribute which best splits the data set into its 
respective classes. The attribute that was previously selected is 
then removed from future consideration and the process is 
repeated recursively on each data subset. The last attribute split 
creates the leaf nodes which are labeled based on a majority vote 
of the class labels of its elements. For attribute selection, the J48 
algorithm is used. SVMs produce a binary linear classifier which 
is able to separate a data set into two distinct classes, the positive 
and negative class. The method works by mapping feature vectors 
of data instances into a higher dimension so that the two classes 
of instances can be separated by a hyper plane. Classification is 
performed by mapping an unknown instance into a higher feature 
dimension and labeling it based on which side of the hyper plane 
it appears. Along with these, each classifier except the Instance 
Based Classifier, due to computation expense, was boosted using 
the Adaptive Boosting method implemented in WEKA. These 
new boosted classifiers were also used in the experiments. 
Different classification algorithms provide the researcher with a 
broader scope of results from the same amount of data.  

3.3 Experimental Design 
Six different n-gram sizes ranging from 2 to 7 were used to 
produce multiple feature vectors representing the same executable 
file.  A binary feature weighting  scheme was used for this effort, 
whereby each unique n-gram was considered a feature and feature 
vectors were created for each document in the data set by 
assigning a ‘1’ to a vector dimension attribute if the 
corresponding n-gram was present in the executable or ‘0’ if it 
was not. Due to the large number of features produced through n-
gram analysis, a reduced corpus had to be created. One set was 
reduced using the feature selection technique of mutual 
information and the other set was reduced using the feature 
extraction technique of randomized projection. For each set, three 
reduced versions were created by reducing each vector to a 
feature set size of 500, 1000, and 1500 using the respective 



dimensionality reduction technique. Various training algorithms 
were then used to classify data as either malicious or benign based 
off of the data given to it. 

4. RESULTS 
Using the methods and techniques described above, a software 
tool was created which received the raw executable files as inputs 
and produced corpuses of mutual information and random 
projection reduced n-gram feature vectors in a format consumable 
by WEKA. WEKA was then used to train and test classifiers 
using the various classification algorithms.  

In order to make a comparison of performance values, a system 
for determining accuracy had to be introduced. These values 
include true positive rate (TPR), false positive rate (FPR), area 
under the curve (AUC) and accuracy. TPR, also known as recall, 
“is the proportion of retrieved applications that are relevant, 
measured by the ratio of the number of relevant retrieved 
applications to the total number of retrieved applications,” [27] or 
the ratio of predicted true positive instances that were identified 
correctly.  The TPR represents the number of malicious instances 
classified as malicious; the FPR represents the number of benign 
instances classified as malicious; the AUC measure represents the 
area under the receiver operating characteristic curve generated 
by the classifier; the accuracy represents the number of instances 
correctly classified by the classifier. 

 Presented below is a sample of the results of the experimental 
runs. Figure 1 illustrates the average accuracies of each classifier 
with respect to n-gram size. The total accuracy was greatest with 
an n = 3 and was lowest with values at the end of the spectrum. At 
n = 4, the accuracy dropped drastically but leveled out slightly at 
n = 5.  Figure 2 illustrates the average accuracy of random 
projection classifiers against n-gram size. It shows that with an n 
= 4 gram size, peak accuracy can be achieved. Similarly to the 
mutual information classifier, after achieving peak performance, 
average accuracy dropped at n = 5 by over 1%. Using features 
with an n-gram size of 2 or 7 generally produced less accurate 
classifiers.  This is possibly due to some important information 
not being provided by an n-gram of size 2, and extraneous 
information which could impair the classifiers with an n-gram of 
size 7. Results show that n-grams of length 3 and 4 were most 
accurate, particularly n-gram of length 3 for the mutual 
information trained classifiers and n-grams of length 4 for random 
projection trained classifiers. With an n-gram of length 3 used on 
the mutual information classifiers with 1500 features, the best 
results show a significant increase in detection accuracy over 
random projection and previous research efforts.  Table 1 shows 
the performance results for a data set reduced by mutual 
information with a 3-gram window with 1500 features. This table 
shows how the static analysis technique of n-gram analysis yields 
extremely high true positive rates for both the boosted J48 
classifier and SVM classifier. All classifiers except the Naïve 
Bayes classifier achieved a TPR of over 0.98. Peak accuracy was 
achieved with the SVM classifiers at 99.26%. The SVM 
classifiers also had the lowest FPR of 0.009.  Though mutual 
information trained classifiers produced the most accurate results 
with 3-grams, random projection trained classifiers were most 
accurate with 4-grams. The SVM and Boosted SVM classifiers 
were able to accurately label malicious applications 99.6% of the 
time while labeling benign applications as malicious only 1.6% of 
the time. Both classifiers resulted with an accuracy of 99.08%.  

 

Figure 1: Average accuracy of each mutual information 
classifier vs. n-gram size.  

Figure 2: Average accuracy of all random projection 
classifiers vs. n-gram size.  

Table 1: Performance results for mutual information, 3-
grams, 1500 features. 

5. Conclusions 
The results of these experiments indicate that using static analysis 
techniques along with classification algorithms and information 
retrieval techniques has merit and can be used to determine if an 
application may contain malicious functionality.  These 
experiments have shown that the results are accurate and better 
than some suggested solutions in literature.   

This is by no means a perfect solution yet, but a tool which when 
combined with other tools could yield a better way to defend data 
and develop more accurate prediction software. This research 
could be used by an analyst to narrow down the amount of 
potentially malicious applications, saving valuable time. This 
technique of static analysis is a useful pathway for research not 
only in malicious application removal, but other applications 
where large data sets are compiled.  

Future efforts for this research include expanding information 
retrieval techniques and creating new ways to analyze data. New 

Algorithm TPR FPR AUC Acc. % 

J48 0.984 0.019 0.983 98.27 

Boosted J48 0.99 0.01 0.996 99.01 

SVM 0.994 0.009 0.992 99.26 

Boosted SVM 0.994 0.009 0.992 99.26 

Naïve Bayes 0.931 0.096 0.959 91.98 

Boosted Naïve Bayes 0.994 0.019 0.996 98.83 

KNN, k = 5 0.993 0.026 0.997 98.46 



dimensionality reduction techniques will also be explored in order 
for the researchers to gain the highest result accuracy. 
Determining the right correlation of techniques is key to a high 
success rate in the experimentation with static analysis.  
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