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ABSTRACT 
This paper describes a research effort to improve the use of the 
cosine similarity information retrieval technique to detect 
unknown, known or variances of known rogue software by 
applying the feature extraction technique of randomized 
projection.  Document similarity techniques, such as cosine 
similarity, have been used with great success in several document 
retrieval applications.  By following a standard information 
retrieval methodology, software, in machine readable format, can 
be regarded as documents in the corpus.  These “documents” may 
or may not have a known rogue functionality.  The query is 
software, again in machine readable format, which contains a 
certain type of rogue software.  This methodology provides an 
ability to search the corpus with a query and retrieve/identify 
potentially rogue software as well as other instances of the same 
type of vulnerability.  This retrieval is based on the similarity of 
the query to a given document in the corpus.  To overcome what 
is known as the ‘the curse of dimensionality’ that can occur with 
the use of this type of information retrieval technique, randomized 
projections are used to create a low-order embedding of the high-
dimensional data.  For our experiment, we obtain Microsoft 
Windows applications, infect a subset of them with several 
common Trojans and apply our dimensionality and prediction 
methodology.  Preliminary results show promise when applying 
randomized projections to cosine similarity in both speed of 
prediction and efficiency of required space when compared with 
using only cosine similarity. 
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1.  INTRODUCTION 
In general, a consumer, whether corporate or private, must depend 
on some other entity to deliver their software needs.  This 
software can come from several different sources ranging from 
software development firms to downloading freeware from the 
Internet.  These software needs include, but are not limited to, the 
operating system, virus detection engines, firewall systems, even 
the latest database software to hold the consumer’s music files.  
Even specialized applications for corporate business needs are 
often purchased rather than developed “in-house.”  The 
outsourcing of application development coupled with 
globalization of the software development market means that 
where software is being developed and by whom is becoming 
more and more abstract.  This presents a difficult security problem 
for the consumer in that developers of a computing application 
may not have the same philosophies or views as the user of the 
application.  An example scenario might be as follows: a virus 
detection developer provides a consumer with a detection engine 
that ignores certain viruses or reports that the machine is free of 
viruses.  Another example could involve a firewall software 
developer manipulating the consumer’s system to report back to 
an outside entity information regarding network traffic data that 
passes through the firewall, without the consumer’s consent or 
knowledge. 
 
No one is immune from these malicious attacks; from the 
corporation to the unsuspecting home user.  To combat these 
attacks on a system, users have turned to anti-virus software 
which contains virus detection engines.  “A large percentage of 
the security software industry is built on the practice of looking 
for the digital patterns (signatures) that identify known threats.” 
[21]  According to the 2007 CSI Computer Crime and Security 
Survey, anti-virus software, which is a signature based solution, 
accounted for 54.3 percent of the total budget for industry 
software security in 2005. [21]  Though good at what they do, 
virus detection engines rely on a database of signatures to detect 
known rogue applications.  Signature based systems inherently 
limit the detection of new and previously unknown types of rogue 
attacks.  To that end there have been several research attempts to 
overcome these limitations.  One notable avenue of exploration 
has been to develop tools and techniques based off the field of 
information retrieval.  Previous attempts [7, 11, 12, 20] to use 
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methodologies and techniques from information retrieval and data 
mining have had some success, but all have been subjected to the 
‘curse of dimensionality’.  The ‘curse of dimensionality’, first 
referred to by Bellman [4], generally describes the computational 
issues related to performing mathematical operations within an 
extremely high dimensional space.  A capability to reduce the 
number of features to a more manageable number is very useful in 
countering this problem.  Making any decisions based on this 
high-dimensional data will require the construction of a low-
dimensional embedding that preserves the underlying “structure” 
hidden in the data.  This research will use a technique called 
randomized projection [15, 17] to create the low-dimensional 
embeddings.  The goal of our work is to provide a mechanism for 
reducing high-dimensional data to a more manageable dimension.  
Information retrieval techniques can, then, be applied with better 
results in both speed to solution and accuracy of prediction 
creating a more robust rogue application detection capability. 
 
The following section provides a background description of 
information retrieval, randomized projection and discusses rogue 
software vulnerabilities.  In Section 3, the experimental design of 
our work is discussed including the software and data used.  In 
Section 4, results achieved are described.  Finally, in Section 5 the 
conclusion and future directions are presented.  

 
2.  BACKGROUND 
Evaluating the effectiveness of a potential solution to the rogue 
software detection problem, in which a low-dimensional 
embedding is used to reduce the dimensions of an information 
retrieval technique, is an important direction in host security 
research.  Below, a description of the information retrieval 
technique, the dimensionality reduction method and rogue 
software vulnerabilities used in our experiments are described. 

 
2.1  Information Retrieval 
Information retrieval traditionally is the “part of computer science 
which studies the retrieval of information (not data) from a 
collection of written documents.” [3]  These retrieved documents’ 
aim is to “satisfy a user’s information need.” [3]  The process can 
be thought of as combing through a set of documents, called the 
corpus, to find a certain piece of information that has a 
relationship to a given entity, called the query.  That piece of 
information can either be an entire document, set of documents or 
a subset of a document.  Within the information retrieval 
community several methods exist for finding these pieces of 
relevant information.  These methods include vector space 
models, latent semantic indexing models and statistical 
confidence models as well as others.  “Vector space models are 
the first approach to represent a document as a set of terms.” [16]  
As their name implies vector space models represent their data as 
a vector with each dimension being defined as a term which may 
or may not have a weight associated with it. [22]  One of the most 
common vector space models is cosine similarity.  Cosine 
similarity determines the similarity between two data vectors by 
measuring the angular distance between them.  “Cosine has the 
nice property that it is 1.0 for identical vectors and 0.0 for 
orthogonal vectors.” [23]  The following is the formula used in 
our work for computing cosine similarity; 

    Cosine Similarity (Q, D) 
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This formula computes the similarity between a query Q and a 
document D.  It does so by summing the individual components 
of the two entities represented in the formula as w.  The individual 
components for this research, w, are defined as n-grams.  An n-
gram is “any substring of length n.” [3]  Here the gram (which 
will be the composite of the substring) is a byte in hexadecimal 
form.  Therefore, wQi is the weight of the ith n-gram in the query 
and wDi is the weight of the ith n-gram in the document. 
 
There have been other efforts [1, 2, 7, 10, 18, 20] to use the 
information retrieval concept of n-grams as a feature generator.  
Henchiri et. al. [7] and Abou-Assaleh et. al. [1, 2] both use the 
Common N-Gram (CNG) analysis method, which uses the most 
frequent n-grams to represent a class, to detect rogue applications.  
Henchiri further limits the number of features by imposing a 
“hierarchical feature selection process”. [7]  Marceau [18] 
suggests an interesting modification on the problem of using n-
grams as features by having “multiple-length” grams instead of 
the tradition single n-length gram.  Marceau does this by first 
creating and then compacting a suffix tree to a directed acyclic 
graph (DAG). [18]    Reddy et. al. [20] develop their own unique 
n-gram feature selection measure called, ‘class-wise document 
frequency.’ 

 
2.2  Randomized Projections 
Rogue application detection, following the genre of information 
retrieval, suffers from the problem that the data, once processed, 
is encoded in extremely high dimensions.  This high-dimensional 
data limits the kind and amount of analysis that can be preformed.  
One method for dealing with reduction of this type of high-
dimensional data is known as feature extraction.  Feature 
extraction transforms, either linearly or non-linearly, the original 
feature set into a reduced set that retains the most important 
predictive information.  Examples of this type include principle 
component analysis, latent semantic analysis and randomized 
projection. 
 
In randomized projection, “the original high-dimensional data is 
projected onto a lower-dimensional subspace using a random 
matrix whose columns have unit lengths.” [5]  This type of 
projection attempts to retain the maximum amount of information 
embedded in the original feature set while substantially reducing 
the number of features required.  This feature reduction will allow 
for greater amounts of analysis to be performed.  The core 
concept has been developed out of the Johnson-Lindenstrauss 
lemma [8] which states that any set of n points in a Euclidean 

space can be mapped to ℜ t where t = )
log

(
2ε
nΟ  with distortion 

≤ 1 + ε  in the distances.  Such a mapping may be found in 
random polynomial time.  A proof of this lemma can be found in 
[6]. 
 
There have been some efforts [5, 17, 19] that look at using 
randomized projection techniques for dimensionality reduction.  
“Randomized projection refers to the technique of projecting a set 



of points from a high-dimensional space to a randomly chosen 
low-dimensional subspace or embedding.” [25]  Minnila et. al. 
[17] are using random projection techniques to map sequences of 
events and find similarities between them.  Their specific 
application is in the telecommunication field looking at how to 
better handle network alarms.  Their goal is to “show the human 
analyst previous situations that resemble the current one” [17] so 
that a more informed decision about the current situation can be 
made.  Though their proposed solution is not perfect, it does show 
the promise of using randomized projections in a similarity based 
application. 
 
Bingham et. al. [5] applies randomized projections to an image 
and text retrieval problem.  In comparison to this research 
problem, their dimensions are not as large, 2500 for images and 
5000 for text but the results are still significant.  The purpose of 
their work was to show that compared to other more traditional 
dimensionality reduction techniques, such as principle component 
analysis or singular value decomposition, randomized projections 
offered a greater detail of accuracy.  The authors were also able to 
show that there was a significant computation saving by using 
randomized projections over other feature extraction techniques, 
such as principle component analysis. 
 
In another text retrieval application, Kaski [9] successfully 
applied randomized projections in his text retrieval application 
that used WEBSOM, a graphical self-organizing map.  Again 
Kaski turned to randomized projection as a method to overcome 
the computation expense that made other dimensionality reduction 
techniques infeasible when handling high-dimensional data sets.  
After incorporating randomized projection into their tool the 
authors gained an additional 5% increase in classification and 
topic separation than in previous methods used. [9] 
 
The following efforts [13, 14, 19] use randomized projection in 
conjunction with latent semantic indexing.  Papadimitriou et. al. 
[19] looking at another information retrieval technique shows 
positive results in using randomized projections as a pre-processor 
to the computationally expensive Latent Semantic Indexing.  By 
simply applying randomized projection to their data before 
computing the Latent Semantic Indexing, their asymptotic 

running time for the overall system improved from 
( )mncΟ

 to 

( )( )ncnm loglog2 +Ο
, where m and n are the matrix size, c 

is the average number of terms per document. [19] 

 
2.3  Rogue Software Vulnerabilities 
Today rogue software vulnerabilities come in all “shapes and 
sizes,” from buffer overflows to injection attacks to information 
leakage attacks.  As noted above there are several instances of 
these vulnerabilities.  Our concentration is on information leakage 
vulnerability attacks.   
 
Information leakage can be defined as when “non-public” 
information is released (or leaked) without the information 
owner’s knowledge or consent.  An information leakage 
vulnerability can be introduced within an application at design 
time through malice or through poor programming practices 
(intentional versus accidental).  It can also be introduced by a 
rogue attacker after deployment by being bundled with, or 
concealed within, a seemingly non-threatening application.  

Symantec reported in their bi-annual threat report for the first half 
of 2005, that “six of the top ten spyware (information leakage) 
programs were delivered to their victim by being bundled with 
some other program.” [24] 
 
There are several methods by which a rogue attack can induce a 
victim’s computer to leak information without the knowledge or 
consent of the user.  A notable example of this is the introduction 
of key stroke loggers into an application.  A key stoke logger is 
software that will record every key that is typed on the user’s 
computer.  Our research not only looks at key stroke loggers but 
also CD key stealers and password stealers.  CD key stealers 
browse through the victim’s computer registry looking for serial 
numbers for any CD's that the victim may have installed and 
registered.  Password stealers work in a similar way but are 
geared specifically for detecting and extracting account 
passwords, such as AOL, Yahoo and MSN.  Each of these stealers 
leaks its illicitly gathered information by packaging and sending it 
to the attacker through email or directly to an FTP server. 
 
Our research concentrates on detecting rogue applications before 
execution while still packaged in their transporter.  This 
transporter is often called a Trojan horse and the rogue package is 
referred to as a Trojan.  A Trojan horse, similar to the myth, may 
provide a useful service (for example, a calculator or Notepad) but 
once executed performs harmful actions.  We investigate a 
specific kind of Trojan horse known as a binder or dropper.  
Binders are applications that have the ability to combine (or bind) 
two or more applications together, yet allow them to run 
autonomously when executed.  This autonomous nature allows the 
attacker to place a non-threatening, useful service together with 
one or more rogue applications.  The unsuspecting user then 
executes the application expecting only the useful application; 
however, unbeknown to them the rogue application(s) are also 
executed. 

 
3.  EXPERIMENT 
The following provides a description of the components of the 
experimental methodology we use.  Details of the software 
application that we developed as well as a description of the data 
set that was used in the experiments are described below.  This 
section concludes with an overall experimental design description 
that provides a description of how the experiments were 
conducted. 

 
3.1  Similarity Software 
The software created for this experiment provides functionality to 
ingest Windows formatted binary executables and then creates an 
m-dimensional data space that contains vectors representing those 
applications.  In these experiments, m is the number of total 
possible n-grams that can be extracted from the ingested 
applications, one dimension for each possible n-gram.  The 
information stored in each of the dimensions can take on one of 
several possible values: the absolute total number of occurrences 
of the particular n-gram in the application, the normalized value 
of the total number of occurrences of the particular n-gram in the 
application, or finally, a 1 if the application contained the 
particular n-gram or a 0 if it did not.  Once the m-dimensional 
vectors have been created, the randomized projection matrix 
algorithm is then applied.  The random matrix is populated by 
selecting vectors that are normally distributed, random variables 



with a mean of 0.0 and a standard deviation of 1.0.  The result is a 
low-dimensional embedding of the original high-dimensional 
features.  Then the cosine similarity algorithm is applied to the 
query application’s vector and the corpus applications’ vectors.  
The cosine similarity algorithm followed is the same as shown in 
Equation 1 above.  A special feature of this software is that it has 
the ability to shift the n-gram window not only by the more 
traditional byte offsets but also by bit offsets.  This allows for a 
more fine grain tuning of the vector values, e.g., if the rogue 
adversary performs bit shifting on the rogue applications.  It also 
provides for more accurate similarity result calculations.  

 
3.2  Data 
The data used for this experiment consisted of 267 Windows 
formatted binary executable files that were randomly chosen from 
a Windows XP operating system.  These files ranged in size from 
50KB to 500KB.  Integrated within the corpus were 24 files that 
had been infected with rogue code using the F.B.I. (Finding, 
Binding and Infecting) binder and six standalone rogue 
applications for a total of 30 rogue applications. The Windows 
applications infected for this experiment were Microsoft 
Calculator, MS-DOS Command Prompt, Microsoft Notepad and 
Microsoft 3D Pinball for Windows.  The rogue applications used 
were the CDKey Harvester v0.9, Fearless KeySpy v2.0, 
LttLogger v2.0, HermanAgent v1.0, ProAgent v2.0 and Recon 
v2.0.  Each docile application was infected with each of the rogue 
applications using the F.B.I. (Finding, Binding and Infecting) 
binder to create 24 infected files.  The binder and all rogue 
applications are freely available for download from the following 
website, http://www.trojanfrance.com.  Table 1 contains short 
descriptions of the rogue applications used in this experiment.  

 
3.3  Design 
This section describes the overall design of our experiment.  The 
size of the n-grams was limited to a 4-byte window.  For the 

dimensionality reduction stage a random matrix was used and 
projected upon the original high-dimensional data set to produce a 
new low-dimensional embedding that contained 500 features.  
The random matrix for the projection was created by randomly 
selecting values to populate the vectors of the matrix.  These 
values were normally distributed random variables with a mean of 
0.0 and a standard deviation of 1.0.  The results of these 
experiments are presented below. 

 
4.  RESULTS 
To make a valid comparison and to show the value of applying 
our dimensionality reduction techniques of randomized 
projection, we compare our results to that of applying the same 
prediction technique of cosine similarity to the data without any 
dimensionality reduction.  The non-dimensionality reduced data 
set contains over 7 million features as compared to the 
dimensionality reduced data set that contains only 500 features. 
 
Tables 2 and 3 depict the performance values for the entire data 
set without using dimensionality reduction and using random 
matrix projections respectively.  These values include true 
positive rate (TPR), false positive rate (FPR), accuracy and 
precision.  TPR, as known as recall, is the ratio of positive 
instances that were correctly identified.  FPR is the ratio of 
negative instances that were incorrectly identified.  Accuracy is 
the ratio of the number of positive instances, either true positive 
or false positive, that were correct.  Precision is the ratio of 
predicted true positive instances that were identified correctly.   

 
Note that the accuracy results shown in Table 3, when compared 
with the results from the data set that did not have dimensionality 
reduction applied (Table 2), fall within the described error term 
mentioned in Section 2.2.  Also, comparing the best results from 
each data set (threshold of 0.3 from Table 2 and 0.6 from Table 3) 
show that our method out performs the non-reduced data set.  This 
can be attributed to the ‘curse of dimensionality’ complicating the 
prediction method.  Significant gains were made from a 
computational performance standpoint.  The addition of 

CDKey 
Harvester v0.9 

searches victim’s registry for 
Online Game CD Keys and 
sends them to the attacker 
through email 

Fearless KeySpy 
v2.0 

keystroke logger  

LttLogger v2.0 keystroke logger that can 
completely remove itself at a 
specified time or after a specific 
amount of collection 

HermanAgent 
v1.0 

password stealer where 
information is passed back to 
the attacker through email 

ProAgent v2.0 monitoring and surveillance tool 
that captures data from 
webcams, screenshots and 
microphone usage 

Recon v2.0 keystroke logger that can 
disable anti-virus and firewall 
software 

 

Table 1. Descriptions of rogue applications 

Threshold Values Performance 
Metric 0.55 0.6 0.65 
TPR 0.8 0.8 0.63 
FPR 0.05 0 0 
Accuracy 0.93 0.98 0.96 
Precision 0.6 1 1 

Table 3. Performance Values using  
Randomized Matrix Projection 

Threshold Values Performance 
Metric 0.5 0.3 0.1 
TPR 0.44 0.7 0.72 
FPR 0 0.002 0.01 
Accuracy 0.94 0.97 0.96 
Precision 1 0.98 0.9 

 

Table 2. Performance Values without 
Dimensionality Reduction 



computing the matrix multiplication to acquire the reduced 
dimensional data set was minimal and can be improved with 
further refinements and taking advantage of advances in fast 
matrix multiplication.  Furthermore, obtaining a prediction result 
for an individual application saw an over 100-time increase.  Over 
a small number of predictions, the minimal time to compute the 
matrix was absorbed.  The data space required to contain the non-
reduced feature vectors was a factor of 3 greater than that required 
to hold the reduced data set. 
 
These results of applying the randomized matrix projection 
algorithm are significant suggesting that we can maintain a high 
precision without sacrificing accuracy or TPR.  It is important to 
note that most methods used in previous research, report only 
accuracy value ratings.  However, a high accuracy rate may not 
tell the entire story.  For example, consider Table 2.  For a 
threshold value of 0.5, the accuracy value is high at 0.94 but the 
TPR rate is only 0.5.  The accuracy values reported in the 
literature range from 93% to 98%, so the results presented with 
this effort are very comparable.  Looking at just the accuracy 
values of Table 3, one can conclude that this method is successful.  
More importantly, we can conclude that our results are successful 
by comparing them with the results from the non-reduced feature 
vectors. 

 
5.  CONCLUSION 
These results support our hypothesis that applying the technique 
of random matrix projection as a dimensionality reduction method 
for the cosine similarity metric has merit in determining if an 
application may contain a rogue application.  We have shown that 
our solution falls within a suitable error range and that the results 
generated are accurate, comparable, and in some cases better than 
other suggested solutions in the literature as well as comparable to 
results generated without using the reduction technique. 
 
There is no claim that this is a complete solution, rather a tool 
designed to fit into the security administrator’s toolbox as a data 
point or first pass to help reduce the number of applications 
needing review.  This potential reduction in number of 
applications to sort through can provide an administrator or 
analyst with valuable time saving by not having to analyze 
applications that clearly do not contain rogue software.  With 
more and more applications not being developed “in-house” this 
is a positive result for those responsible for providing secure 
solutions. 
 
Future efforts for this research are to expand it with the addition 
of prediction algorithms from the data mining realm, for example 
decision trees.  Also the author plans to investigate additional 
dimensionality reduction methods and techniques in order to 
further expand and enhance the analysis capability.  Additional 
research is also planned into determining the threshold values for 
the similarity algorithm.  Determining the key factors in choosing 
an optimal threshold value is crucial, as can be seen above, to 
gaining high confidence and to the success rate of the algorithm.  
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