
Applying Randomized Projection to aid Prediction
Algorithms in Detecting High-Dimensional Rogue

Applications

Travis Atkison
Department of Computer Science and Engineering

Mississippi State University
Starkville, MS 39762

tla96@msstate.edu

ABSTRACT
This paper describes a research effort to improve the use of the
cosine similarity information retrieval technique to detect
unknown, known or variances of known rogue software by
applying the feature extraction technique of randomized
projection. Document similarity techniques, such as cosine
similarity, have been used with great success in several document
retrieval applications. By following a standard information
retrieval methodology, software, in machine readable format, can
be regarded as documents in the corpus. These “documents” may
or may not have a known rogue functionality. The query is
software, again in machine readable format, which contains a
certain type of rogue software. This methodology provides an
ability to search the corpus with a query and retrieve/identify
potentially rogue software as well as other instances of the same
type of vulnerability. This retrieval is based on the similarity of
the query to a given document in the corpus. To overcome what
is known as the ‘the curse of dimensionality’ that can occur with
the use of this type of information retrieval technique, randomized
projections are used to create a low-order embedding of the high-
dimensional data. For our experiment, we obtain Microsoft
Windows applications, infect a subset of them with several
common Trojans and apply our dimensionality and prediction
methodology. Preliminary results show promise when applying
randomized projections to cosine similarity in both speed of
prediction and efficiency of required space when compared with
using only cosine similarity.

Categories and Subject Descriptors
D.2.0 [Software Engineering]: General – Protection mechanisms

General Terms
Security

Keywords
Rogue software detection, information retrieval, n-gram analysis,
cosine similarity, randomized projections

1. INTRODUCTION
In general, a consumer, whether corporate or private, must depend
on some other entity to deliver their software needs. This
software can come from several different sources ranging from
software development firms to downloading freeware from the
Internet. These software needs include, but are not limited to, the
operating system, virus detection engines, firewall systems, even
the latest database software to hold the consumer’s music files.
Even specialized applications for corporate business needs are
often purchased rather than developed “in-house.” The
outsourcing of application development coupled with
globalization of the software development market means that
where software is being developed and by whom is becoming
more and more abstract. This presents a difficult security problem
for the consumer in that developers of a computing application
may not have the same philosophies or views as the user of the
application. An example scenario might be as follows: a virus
detection developer provides a consumer with a detection engine
that ignores certain viruses or reports that the machine is free of
viruses. Another example could involve a firewall software
developer manipulating the consumer’s system to report back to
an outside entity information regarding network traffic data that
passes through the firewall, without the consumer’s consent or
knowledge.

No one is immune from these malicious attacks; from the
corporation to the unsuspecting home user. To combat these
attacks on a system, users have turned to anti-virus software
which contains virus detection engines. “A large percentage of
the security software industry is built on the practice of looking
for the digital patterns (signatures) that identify known threats.”
[21] According to the 2007 CSI Computer Crime and Security
Survey, anti-virus software, which is a signature based solution,
accounted for 54.3 percent of the total budget for industry
software security in 2005. [21] Though good at what they do,
virus detection engines rely on a database of signatures to detect
known rogue applications. Signature based systems inherently
limit the detection of new and previously unknown types of rogue
attacks. To that end there have been several research attempts to
overcome these limitations. One notable avenue of exploration
has been to develop tools and techniques based off the field of
information retrieval. Previous attempts [7, 11, 12, 20] to use

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first page.
To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission and/or a fee.
ACMSE ’09 March 19-21, 2009, Clemson, SC, USA.
Copyright 2009 ACM 1-58113-000-0/00/0004 ...$5.00.

methodologies and techniques from information retrieval and data
mining have had some success, but all have been subjected to the
‘curse of dimensionality’. The ‘curse of dimensionality’, first
referred to by Bellman [4], generally describes the computational
issues related to performing mathematical operations within an
extremely high dimensional space. A capability to reduce the
number of features to a more manageable number is very useful in
countering this problem. Making any decisions based on this
high-dimensional data will require the construction of a low-
dimensional embedding that preserves the underlying “structure”
hidden in the data. This research will use a technique called
randomized projection [15, 17] to create the low-dimensional
embeddings. The goal of our work is to provide a mechanism for
reducing high-dimensional data to a more manageable dimension.
Information retrieval techniques can, then, be applied with better
results in both speed to solution and accuracy of prediction
creating a more robust rogue application detection capability.

The following section provides a background description of
information retrieval, randomized projection and discusses rogue
software vulnerabilities. In Section 3, the experimental design of
our work is discussed including the software and data used. In
Section 4, results achieved are described. Finally, in Section 5 the
conclusion and future directions are presented.

2. BACKGROUND
Evaluating the effectiveness of a potential solution to the rogue
software detection problem, in which a low-dimensional
embedding is used to reduce the dimensions of an information
retrieval technique, is an important direction in host security
research. Below, a description of the information retrieval
technique, the dimensionality reduction method and rogue
software vulnerabilities used in our experiments are described.

2.1 Information Retrieval
Information retrieval traditionally is the “part of computer science
which studies the retrieval of information (not data) from a
collection of written documents.” [3] These retrieved documents’
aim is to “satisfy a user’s information need.” [3] The process can
be thought of as combing through a set of documents, called the
corpus, to find a certain piece of information that has a
relationship to a given entity, called the query. That piece of
information can either be an entire document, set of documents or
a subset of a document. Within the information retrieval
community several methods exist for finding these pieces of
relevant information. These methods include vector space
models, latent semantic indexing models and statistical
confidence models as well as others. “Vector space models are
the first approach to represent a document as a set of terms.” [16]
As their name implies vector space models represent their data as
a vector with each dimension being defined as a term which may
or may not have a weight associated with it. [22] One of the most
common vector space models is cosine similarity. Cosine
similarity determines the similarity between two data vectors by
measuring the angular distance between them. “Cosine has the
nice property that it is 1.0 for identical vectors and 0.0 for
orthogonal vectors.” [23] The following is the formula used in
our work for computing cosine similarity;

 Cosine Similarity (Q, D)

∑∑
∑

=

i
iD

i
iQ

i
iDiQ

ww

ww

2
,

2
,

,,

 1

This formula computes the similarity between a query Q and a
document D. It does so by summing the individual components
of the two entities represented in the formula as w. The individual
components for this research, w, are defined as n-grams. An n-
gram is “any substring of length n.” [3] Here the gram (which
will be the composite of the substring) is a byte in hexadecimal
form. Therefore, wQi is the weight of the ith n-gram in the query
and wDi is the weight of the ith n-gram in the document.

There have been other efforts [1, 2, 7, 10, 18, 20] to use the
information retrieval concept of n-grams as a feature generator.
Henchiri et. al. [7] and Abou-Assaleh et. al. [1, 2] both use the
Common N-Gram (CNG) analysis method, which uses the most
frequent n-grams to represent a class, to detect rogue applications.
Henchiri further limits the number of features by imposing a
“hierarchical feature selection process”. [7] Marceau [18]
suggests an interesting modification on the problem of using n-
grams as features by having “multiple-length” grams instead of
the tradition single n-length gram. Marceau does this by first
creating and then compacting a suffix tree to a directed acyclic
graph (DAG). [18] Reddy et. al. [20] develop their own unique
n-gram feature selection measure called, ‘class-wise document
frequency.’

2.2 Randomized Projections
Rogue application detection, following the genre of information
retrieval, suffers from the problem that the data, once processed,
is encoded in extremely high dimensions. This high-dimensional
data limits the kind and amount of analysis that can be preformed.
One method for dealing with reduction of this type of high-
dimensional data is known as feature extraction. Feature
extraction transforms, either linearly or non-linearly, the original
feature set into a reduced set that retains the most important
predictive information. Examples of this type include principle
component analysis, latent semantic analysis and randomized
projection.

In randomized projection, “the original high-dimensional data is
projected onto a lower-dimensional subspace using a random
matrix whose columns have unit lengths.” [5] This type of
projection attempts to retain the maximum amount of information
embedded in the original feature set while substantially reducing
the number of features required. This feature reduction will allow
for greater amounts of analysis to be performed. The core
concept has been developed out of the Johnson-Lindenstrauss
lemma [8] which states that any set of n points in a Euclidean

space can be mapped to ℜ t where t =)
log

(
2ε
nΟ with distortion

≤ 1 + ε in the distances. Such a mapping may be found in
random polynomial time. A proof of this lemma can be found in
[6].

There have been some efforts [5, 17, 19] that look at using
randomized projection techniques for dimensionality reduction.
“Randomized projection refers to the technique of projecting a set

of points from a high-dimensional space to a randomly chosen
low-dimensional subspace or embedding.” [25] Minnila et. al.
[17] are using random projection techniques to map sequences of
events and find similarities between them. Their specific
application is in the telecommunication field looking at how to
better handle network alarms. Their goal is to “show the human
analyst previous situations that resemble the current one” [17] so
that a more informed decision about the current situation can be
made. Though their proposed solution is not perfect, it does show
the promise of using randomized projections in a similarity based
application.

Bingham et. al. [5] applies randomized projections to an image
and text retrieval problem. In comparison to this research
problem, their dimensions are not as large, 2500 for images and
5000 for text but the results are still significant. The purpose of
their work was to show that compared to other more traditional
dimensionality reduction techniques, such as principle component
analysis or singular value decomposition, randomized projections
offered a greater detail of accuracy. The authors were also able to
show that there was a significant computation saving by using
randomized projections over other feature extraction techniques,
such as principle component analysis.

In another text retrieval application, Kaski [9] successfully
applied randomized projections in his text retrieval application
that used WEBSOM, a graphical self-organizing map. Again
Kaski turned to randomized projection as a method to overcome
the computation expense that made other dimensionality reduction
techniques infeasible when handling high-dimensional data sets.
After incorporating randomized projection into their tool the
authors gained an additional 5% increase in classification and
topic separation than in previous methods used. [9]

The following efforts [13, 14, 19] use randomized projection in
conjunction with latent semantic indexing. Papadimitriou et. al.
[19] looking at another information retrieval technique shows
positive results in using randomized projections as a pre-processor
to the computationally expensive Latent Semantic Indexing. By
simply applying randomized projection to their data before
computing the Latent Semantic Indexing, their asymptotic

running time for the overall system improved from
()mncΟ

 to

()()ncnm loglog2 +Ο
, where m and n are the matrix size, c

is the average number of terms per document. [19]

2.3 Rogue Software Vulnerabilities
Today rogue software vulnerabilities come in all “shapes and
sizes,” from buffer overflows to injection attacks to information
leakage attacks. As noted above there are several instances of
these vulnerabilities. Our concentration is on information leakage
vulnerability attacks.

Information leakage can be defined as when “non-public”
information is released (or leaked) without the information
owner’s knowledge or consent. An information leakage
vulnerability can be introduced within an application at design
time through malice or through poor programming practices
(intentional versus accidental). It can also be introduced by a
rogue attacker after deployment by being bundled with, or
concealed within, a seemingly non-threatening application.

Symantec reported in their bi-annual threat report for the first half
of 2005, that “six of the top ten spyware (information leakage)
programs were delivered to their victim by being bundled with
some other program.” [24]

There are several methods by which a rogue attack can induce a
victim’s computer to leak information without the knowledge or
consent of the user. A notable example of this is the introduction
of key stroke loggers into an application. A key stoke logger is
software that will record every key that is typed on the user’s
computer. Our research not only looks at key stroke loggers but
also CD key stealers and password stealers. CD key stealers
browse through the victim’s computer registry looking for serial
numbers for any CD's that the victim may have installed and
registered. Password stealers work in a similar way but are
geared specifically for detecting and extracting account
passwords, such as AOL, Yahoo and MSN. Each of these stealers
leaks its illicitly gathered information by packaging and sending it
to the attacker through email or directly to an FTP server.

Our research concentrates on detecting rogue applications before
execution while still packaged in their transporter. This
transporter is often called a Trojan horse and the rogue package is
referred to as a Trojan. A Trojan horse, similar to the myth, may
provide a useful service (for example, a calculator or Notepad) but
once executed performs harmful actions. We investigate a
specific kind of Trojan horse known as a binder or dropper.
Binders are applications that have the ability to combine (or bind)
two or more applications together, yet allow them to run
autonomously when executed. This autonomous nature allows the
attacker to place a non-threatening, useful service together with
one or more rogue applications. The unsuspecting user then
executes the application expecting only the useful application;
however, unbeknown to them the rogue application(s) are also
executed.

3. EXPERIMENT
The following provides a description of the components of the
experimental methodology we use. Details of the software
application that we developed as well as a description of the data
set that was used in the experiments are described below. This
section concludes with an overall experimental design description
that provides a description of how the experiments were
conducted.

3.1 Similarity Software
The software created for this experiment provides functionality to
ingest Windows formatted binary executables and then creates an
m-dimensional data space that contains vectors representing those
applications. In these experiments, m is the number of total
possible n-grams that can be extracted from the ingested
applications, one dimension for each possible n-gram. The
information stored in each of the dimensions can take on one of
several possible values: the absolute total number of occurrences
of the particular n-gram in the application, the normalized value
of the total number of occurrences of the particular n-gram in the
application, or finally, a 1 if the application contained the
particular n-gram or a 0 if it did not. Once the m-dimensional
vectors have been created, the randomized projection matrix
algorithm is then applied. The random matrix is populated by
selecting vectors that are normally distributed, random variables

with a mean of 0.0 and a standard deviation of 1.0. The result is a
low-dimensional embedding of the original high-dimensional
features. Then the cosine similarity algorithm is applied to the
query application’s vector and the corpus applications’ vectors.
The cosine similarity algorithm followed is the same as shown in
Equation 1 above. A special feature of this software is that it has
the ability to shift the n-gram window not only by the more
traditional byte offsets but also by bit offsets. This allows for a
more fine grain tuning of the vector values, e.g., if the rogue
adversary performs bit shifting on the rogue applications. It also
provides for more accurate similarity result calculations.

3.2 Data
The data used for this experiment consisted of 267 Windows
formatted binary executable files that were randomly chosen from
a Windows XP operating system. These files ranged in size from
50KB to 500KB. Integrated within the corpus were 24 files that
had been infected with rogue code using the F.B.I. (Finding,
Binding and Infecting) binder and six standalone rogue
applications for a total of 30 rogue applications. The Windows
applications infected for this experiment were Microsoft
Calculator, MS-DOS Command Prompt, Microsoft Notepad and
Microsoft 3D Pinball for Windows. The rogue applications used
were the CDKey Harvester v0.9, Fearless KeySpy v2.0,
LttLogger v2.0, HermanAgent v1.0, ProAgent v2.0 and Recon
v2.0. Each docile application was infected with each of the rogue
applications using the F.B.I. (Finding, Binding and Infecting)
binder to create 24 infected files. The binder and all rogue
applications are freely available for download from the following
website, http://www.trojanfrance.com. Table 1 contains short
descriptions of the rogue applications used in this experiment.

3.3 Design
This section describes the overall design of our experiment. The
size of the n-grams was limited to a 4-byte window. For the

dimensionality reduction stage a random matrix was used and
projected upon the original high-dimensional data set to produce a
new low-dimensional embedding that contained 500 features.
The random matrix for the projection was created by randomly
selecting values to populate the vectors of the matrix. These
values were normally distributed random variables with a mean of
0.0 and a standard deviation of 1.0. The results of these
experiments are presented below.

4. RESULTS
To make a valid comparison and to show the value of applying
our dimensionality reduction techniques of randomized
projection, we compare our results to that of applying the same
prediction technique of cosine similarity to the data without any
dimensionality reduction. The non-dimensionality reduced data
set contains over 7 million features as compared to the
dimensionality reduced data set that contains only 500 features.

Tables 2 and 3 depict the performance values for the entire data
set without using dimensionality reduction and using random
matrix projections respectively. These values include true
positive rate (TPR), false positive rate (FPR), accuracy and
precision. TPR, as known as recall, is the ratio of positive
instances that were correctly identified. FPR is the ratio of
negative instances that were incorrectly identified. Accuracy is
the ratio of the number of positive instances, either true positive
or false positive, that were correct. Precision is the ratio of
predicted true positive instances that were identified correctly.

Note that the accuracy results shown in Table 3, when compared
with the results from the data set that did not have dimensionality
reduction applied (Table 2), fall within the described error term
mentioned in Section 2.2. Also, comparing the best results from
each data set (threshold of 0.3 from Table 2 and 0.6 from Table 3)
show that our method out performs the non-reduced data set. This
can be attributed to the ‘curse of dimensionality’ complicating the
prediction method. Significant gains were made from a
computational performance standpoint. The addition of

CDKey
Harvester v0.9

searches victim’s registry for
Online Game CD Keys and
sends them to the attacker
through email

Fearless KeySpy
v2.0

keystroke logger

LttLogger v2.0 keystroke logger that can
completely remove itself at a
specified time or after a specific
amount of collection

HermanAgent
v1.0

password stealer where
information is passed back to
the attacker through email

ProAgent v2.0 monitoring and surveillance tool
that captures data from
webcams, screenshots and
microphone usage

Recon v2.0 keystroke logger that can
disable anti-virus and firewall
software

Table 1. Descriptions of rogue applications

Threshold Values Performance
Metric 0.55 0.6 0.65
TPR 0.8 0.8 0.63
FPR 0.05 0 0
Accuracy 0.93 0.98 0.96
Precision 0.6 1 1

Table 3. Performance Values using
Randomized Matrix Projection

Threshold Values Performance
Metric 0.5 0.3 0.1
TPR 0.44 0.7 0.72
FPR 0 0.002 0.01
Accuracy 0.94 0.97 0.96
Precision 1 0.98 0.9

Table 2. Performance Values without
Dimensionality Reduction

computing the matrix multiplication to acquire the reduced
dimensional data set was minimal and can be improved with
further refinements and taking advantage of advances in fast
matrix multiplication. Furthermore, obtaining a prediction result
for an individual application saw an over 100-time increase. Over
a small number of predictions, the minimal time to compute the
matrix was absorbed. The data space required to contain the non-
reduced feature vectors was a factor of 3 greater than that required
to hold the reduced data set.

These results of applying the randomized matrix projection
algorithm are significant suggesting that we can maintain a high
precision without sacrificing accuracy or TPR. It is important to
note that most methods used in previous research, report only
accuracy value ratings. However, a high accuracy rate may not
tell the entire story. For example, consider Table 2. For a
threshold value of 0.5, the accuracy value is high at 0.94 but the
TPR rate is only 0.5. The accuracy values reported in the
literature range from 93% to 98%, so the results presented with
this effort are very comparable. Looking at just the accuracy
values of Table 3, one can conclude that this method is successful.
More importantly, we can conclude that our results are successful
by comparing them with the results from the non-reduced feature
vectors.

5. CONCLUSION
These results support our hypothesis that applying the technique
of random matrix projection as a dimensionality reduction method
for the cosine similarity metric has merit in determining if an
application may contain a rogue application. We have shown that
our solution falls within a suitable error range and that the results
generated are accurate, comparable, and in some cases better than
other suggested solutions in the literature as well as comparable to
results generated without using the reduction technique.

There is no claim that this is a complete solution, rather a tool
designed to fit into the security administrator’s toolbox as a data
point or first pass to help reduce the number of applications
needing review. This potential reduction in number of
applications to sort through can provide an administrator or
analyst with valuable time saving by not having to analyze
applications that clearly do not contain rogue software. With
more and more applications not being developed “in-house” this
is a positive result for those responsible for providing secure
solutions.

Future efforts for this research are to expand it with the addition
of prediction algorithms from the data mining realm, for example
decision trees. Also the author plans to investigate additional
dimensionality reduction methods and techniques in order to
further expand and enhance the analysis capability. Additional
research is also planned into determining the threshold values for
the similarity algorithm. Determining the key factors in choosing
an optimal threshold value is crucial, as can be seen above, to
gaining high confidence and to the success rate of the algorithm.

6. ACKNOWLEDGMENTS
The author would like to thank Dr. Ray Vaughn for his insight
and thoughtful review. The author would also like to thank
Rebekah Atkison for reviewing this document for its grammatical

content. This work was partially supported by the National
Science Foundation under grant SCI0430354 04090852.

7. REFERENCES
[1] T. Abou-Assaleh, N. Cercone, V. Keselj, and R.

Sweidan, "Detection of New Malicious Code Using N-
grams Signatures," in Proceedings of the Second Annual
Conference on Privacy, Security and Trust, New
Brunswick, Canada, 2004, pp. 193 - 196.

[2] T. Abou-Assaleh, N. Cercone, V. Keselj, and R.
Sweidan, "N-gram-based Detection of New Malicious
Code," in Proceedings of the 28th Annual International
Computer Software and Applications Conference, 2004.
COMPSAC 2004. vol. 2, 2004.

[3] R. Baeza-Yates and B. Ribeiro-Neto, Modern
Information Retrieval. Harlow, England: Addison
Wesley, 1999.

[4] R. Bellman, Adaptive Control Processes: A Guided
Tour: Princeton University Press, 1961.

[5] E. Bingham and H. Mannila, "Random projection in
dimensionality reduction: applications to image and text
data," Proceedings of the seventh ACM SIGKDD
international conference on Knowledge discovery and
data mining, pp. 245-250, 2001.

[6] S. Dasgupta and A. Gupta, "An elementary proof of the
Johnson-Lindenstrauss Lemma," Interantional
Computer Science Institute, Berkley, California, USA
1999.

[7] O. Henchiri and N. Japkowicz, "A Feature Selection
and Evaluation Scheme for Computer Virus Detection,"
Data Mining, 2006. ICDM’06. Sixth International
Conference on, pp. 891-895, 2006.

[8] W. B. Johnson and J. Lindenstrauss, "Extensions of
Lipschitz mappings into a Hilbert space,"
Contemporary Mathematics, vol. 26, pp. 189-206, 1984.

[9] S. Kaski, "Dimensionality Reduction by Random
Mapping: Fast Similarity Computation for Clustering,"
Neural Networks Proceedings, 1998. IEEE World
Congress on Computational Intelligence. The 1998
IEEE International Joint Conference on, vol. 1, 1998.

[10] J. O. Kephart, G. B. Sorkin, W. C. Arnold, D. M. Chess,
G. J. Tesauro, and S. R. White, "Biologically inspired
defenses against computer viruses," in Proceedings of
the Fourteenth International Joint Conference on
Artificial Intellgence, San Francisco, CA, 1995, pp. 985
- 996.

[11] J. Z. Kolter and M. A. Maloof, "Learning to Detect and
Classify Malicious Executables in the Wild," The
Journal of Machince Learning Research, vol. 7, pp.
2721-2744, 2006.

[12] J. Z. Kolter and M. A. Maloof, "Learning to Detect
Malicious Executables in the Wild," in Proceedings of
the Tenth ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining Seattle, WA,
USA: ACM Press, 2004, pp. 470-478.

[13] M. Kurimo, "Indexing Audio Documents by using
Latent Semantic Analysis and SOM," Kohonen Maps,
pp. 363-374, 1999.

[14] J. Lin and D. Gunopulos, "Dimensionality reduction by
random projection and latent semantic indexing,"
Proceedings of the Text Mining Workshop, at the 3rd

SIAM International Conference on Data Mining, May,
2003.

[15] N. Linial, E. London, and Y. Rabinovich, "The
geometry of graphs and some of its algorithmic
applications," Combinatorica, vol. 15, pp. 215-245,
1995.

[16] N. Liu, B. Zhang, J. Yan, Q. Yang, S. Yan, Z. Chen, F.
Bai, and W.-Y. Ma, "Learning Similarity Measures in
Non-Orthogonal Space," in Proceedings of the
Thirteenth ACM International Conference on
Information and Knowledge Management Washington,
D.C., USA: ACM Press, 2004, pp. 334 - 341.

[17] H. Mannila and J. K. Seppänen, "Finding similar
situations in sequences of events," First SIAM
International Conference on Data Mining, 2001.

[18] C. Marceau, "Characterizing the Behavior of a Program
Using Multiple-Length N-grams," in Proceedings of the
2000 workshop on New security paradigms Ballycotton,
County Cork, Ireland: ACM, 2000.

[19] C. H. Papadimitriou, P. Raghavan, H. Tamaki, and S.
Vempala, "Latent Semantic Indexing: A Probabilistic
Analysis," Journal of Computer and System Sciences,
vol. 61, pp. 217-235, 2000.

[20] D. K. S. Reddy and A. K. Pujari, "N-gram analysis for
computer virus detection," Journal in Computer
Virology, vol. 2, pp. 231 - 239, 2006.

[21] R. Richardson, "2007 CSI Computer Crime and
Security Survey," Computer Security Institute 2007.

[22] G. Salton, A. Wong, and C. S. Yang, "A vector space
model for automatic indexing," Communications of the
ACM, vol. 18, pp. 613-620, 1975.

[23] A. Singhal, "Modern Information Retrieval: A Brief
Overview," Bulletin of the Technical Committee on
Data Engineering, vol. 24, pp. 35 - 43, 2001.

[24] Symantec, "Symantec Internet Security Threat Report:
Trends for January 05 - June 05," September 2005.

[25] S. S. Vempala, The Random Projection Method:
American Mathematical Society, 2004.

